Question 4.P.17: Consider a particle of mass m and charge q moving under the ...

Consider a particle of mass m and charge q moving under the influence of a one-dimensional harmonic oscillator potential. Assume it is placed in a constant electric field E. The Hamiltonian of this particle is therefore given by \hat{H}=\hat{P}^{2} /(2m)+\frac{1}{2} m\omega ^{2}\hat{X}^{2}-q\varepsilon \hat{X} . Derive the energy expression and the wave function of the nth excited state.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To find the eigenenergies of the Hamiltonian

\hat{H}=\frac{1}{2m} \hat{P}^{2}+\frac{1}{2} m\omega ^{2}\hat {X}^{2}-q\varepsilon \hat{X},                  (4.334)

it is convenient to use the change of variable y=\hat{X}-q \varepsilon /(m\omega ^{2}). Thus the Hamiltonian becomes

\hat{H}=\frac{1}{2m} \hat{P}^{2}+\frac{1}{2} m\omega ^{2}\hat {y}^{2}-\frac{q^{2}\varepsilon ^{2} }{m\omega ^{2}}.           (4.335)

Since the term q^{2}\varepsilon ^{2}/(2m\omega ^{2}) is a mere constant and \hat{P}^{2} /(2m)+\frac{1}{2} m\omega ^{2}\hat{y}^{2}=\hat{H}_{HO} has the structure of a harmonic oscillator Hamiltonian, we can easily infer the energy levels:

E_{n} =〈n|\hat{H}|n 〉=\hbar \omega \left(n+\frac{1}{2}\right) -\frac{q^{2}\varepsilon ^{2} }{2m\omega ^{2}}.                  (4.336)

The wave function is given by \psi _{n} (y)=\psi _{n}(x-q\varepsilon /(m\omega ^{2})), where \psi _{n} (y) is given in (4.172):

\psi _{n} (y)=\frac{1}{\sqrt{\sqrt{\pi }2^{n}n!x_{0} } } e^{-x^{2}/2x^{2}_{0} } H_{n} \left(\frac{x}{x_{0} } \right).                   (4.172)

\psi _{n} (y)=\frac{1}{\sqrt{\sqrt{\pi }2^{n}n!x_{0} } } e^{-y^{2}/2x^{2}_{0} } H_{n} \left(\frac{y}{x_{0} } \right) .               (4.337)

Related Answered Questions