Question 5.P.13: Consider a particle of spin s = 3/2.(a) Find the matrices re...

Consider a particle of spin s = 3/2.

(a) Find the matrices representing the operators \hat{S}_{z},\hat{S}_{x},\hat{S}_{y} ,\hat{S}^{2}_{x}, and \hat{S}^{2}_{y} within the basis of \hat{S}^{2} and \hat{S}_{z}.

(b) Find the energy levels of this particle when its Hamiltonian is given by

\hat{H}=\frac{\varepsilon _{0} }{\hbar ^{2} } (\hat{S}^{2}_{x}-\hat{S}^{2}_{y})-\frac{\varepsilon _{0}}{\hbar } \hat{S}_{z},

where \varepsilon _{0} is a constant having the dimensions of energy. Are these levels degenerate?

(c) If the system was initially in an eigenstate |\psi _{0} 〉=\left(\begin{matrix} 1 \\ 0 \\ 0 \\ 0 \end{matrix} \right), find the state of the system at time t.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Following the same procedure that led to (5.73)

\hat{J}_{z}=\hbar \left(\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right).

and (5.75),

\hat{J}_{x}=\frac{\hbar }{\sqrt{2} } \left(\begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right) ,     \hat{J}_{y}= \frac {\hbar }{\sqrt{2} } \left(\begin{matrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{matrix} \right).

we can verify that for s=\frac{3}{2} we have

S_{z} =\frac{\hbar }{2} \left(\begin{matrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{matrix} \right),               (5.314)

 

\hat{S}_{-} =\hbar \left(\begin{matrix} 0 & 0 & 0 & 0 \\ \sqrt {3} & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 \end{matrix} \right),        \hat{S}_{+} =\hbar \left(\begin{matrix} 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 & 0 \end{matrix} \right),           (5.315)

which, when combined with \hat{S}_{x}=(\hat{S}_{+}+\hat {S}_{-})/2 and \hat{S}_{y}=i(\hat{S}_{-}-\hat{S}_{+}) /2, lead to

\hat{S}_{x}=\frac{\hbar }{2} \left(\begin{matrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{matrix} \right) ,        \hat{S}_{y}=\frac{i\hbar }{2} \left(\begin{matrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{matrix} \right).    (5.316)

Thus, we have

\hat{S}^{2}_{x} =\frac{\hbar ^{2} }{4} \left(\begin{matrix} 3 & 0 & 2\sqrt{3} & 0 \\ 0 & 7 & 0 & 2\sqrt{3} \\ 2\sqrt{3} & 0 & 7 & 0 \\ 0 & 2\sqrt{3} & 0 & 3 \end{matrix} \right),\hat{S}^{2}_{y} =\frac{\hbar ^{2} }{4} \left(\begin{matrix} 3 & 0 & -2\sqrt{3} & 0 \\ 0 & 7 & 0 & -2\sqrt{3} \\ -2\sqrt{3} & 0 & 7 & 0 \\ 0 & -2\sqrt{3} & 0 & 3 \end {matrix} \right).  (5.317)

(b) The Hamiltonian is then given by

H=\frac{\varepsilon _{0} }{\hbar ^{2} } (\hat{S}^{2}_{x}-\hat{S}^{2}_{y})-\frac{\varepsilon _{0} }{\hbar}\hat{S}_{z}=\frac{1}{2} \varepsilon _{0}\left(\begin{matrix} -3 & 0 & 2\sqrt{3} & 0 \\ 0 & -1 & 0 & 2\sqrt{3} \\ 2\sqrt{3} & 0 & 1 & 0 \\ 0 & 2\sqrt{3} & 0 & 3 \end{matrix} \right).           (5.318)

The diagonalization of this Hamiltonian yields the following energy values:

E_{1} =-\frac{5}{2} \varepsilon _{0},    E_{2} =-\frac{3}{2} \varepsilon _{0},    E_{3} =\frac{3}{2} \varepsilon _{0},   E_{4} =\frac{5}{2} \varepsilon _{0}.        (5.319)

The corresponding normalized eigenvectors are given by

|1 〉=\frac{1}{2} \left(\begin{matrix} -\sqrt{3} \\ 0 \\ 1 \\ 0 \end{matrix} \right) , |2 〉=\frac{1}{2} \left(\begin{matrix} 0 \\ -\sqrt{3} \\ 0 \\ 1 \end{matrix} \right), |3 〉=\frac{1}{\sqrt{12} }\left(\begin{matrix} \sqrt{3} \\ 0 \\ 3 \\ 0 \end{matrix} \right), |4 〉=\frac{1}{2} \left(\begin{matrix} 0 \\ 1 \\ 0 \\ \sqrt{3} \end{matrix} \right).   (5.320)

None of the energy levels is degenerate.

(c) Since the initial state |\psi _{0} 〉 can be written in terms of the eigenvectors (5.320) as follows:

|\psi _{0} 〉=\left(\begin{matrix} 1 \\ 0 \\ 0 \\ 0 \end{matrix} \right)=-\frac{\sqrt{3}}{2} |1 〉+\frac{1}{2}|3 〉;                       (5.321)

the eigenfunction at a later time t is given by

|\psi (t) 〉=-\frac{\sqrt{3}}{2} |1 〉e^{-iE_{1}t/\hbar } +\frac{1}{2}|3 〉e^{-iE_{3}t/\hbar }

 

=-\frac{\sqrt{3}}{4}\left(\begin{matrix} -\sqrt{3} \\ 0 \\ 1 \\ 0 \end{matrix} \right)\exp \left[\frac{5i\varepsilon _{0}t}{2\hbar } \right] +\frac{1}{2\sqrt{12} }\left(\begin{matrix} \sqrt{3} \\ 0 \\ 3 \\ 0 \end{matrix} \right)\exp \left[-\frac{3i\varepsilon _{0}t}{2\hbar } \right] .     (5.322)

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...