Question 5.P.8: Consider a particle of total angular momentum j = 1. Find th...

Consider a particle of total angular momentum j = 1. Find the matrix for the component of \vec{J} along a unit vector with arbitrary direction \vec{n}. Find its eigenvalues and eigenvectors.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since \vec{J}=J_{x} \vec{i}+J_{y} \vec{j}+J_{z} \vec{k} and \vec{n}=(\sin \theta \cos \varphi )\vec{i}+(\sin \theta \sin \varphi )\vec{j}+(\cos \theta )\vec{k}, the component of \vec{J} along \vec{n} is

\vec{n}.\vec{J}=J_{x}\sin \theta \cos \varphi+J_{y}\sin \theta \sin \varphi+J_{z}\cos \theta,                (5.271)

with 0\leq \theta \leq \pi and 0\leq \varphi \leq 2\pi ; the matrices of \hat{J}_{x} ,\hat{J}_{y}, and \hat{J}_{z} are given by (5.259).

\hat{J}_{x}=\frac{\hbar }{\sqrt{2} } \left(\begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right) , \hat{J}_{y}= \frac {\hbar }{\sqrt{2} }\left(\begin{matrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{matrix} \right),\hat{J}_{z}=\hbar \left(\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right).

We can therefore write this equation in the following matrix form:

\vec{n}.\vec{J}=\frac{\hbar }{\sqrt{2} } \left(\begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right)\sin \theta \cos \varphi+\frac{\hbar }{\sqrt{2} }\left(\begin{matrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{matrix} \right)\sin \theta \sin \varphi

 

+\hbar \left(\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right)\cos \theta =\frac{\hbar }{\sqrt{2} }\left(\begin {matrix} \sqrt{2}\cos \theta & e^{-i\varphi }\sin \theta & 0 \\ e^{i\varphi }\sin \theta & 0 & e^{-i\varphi }\sin \theta \\ 0 & e^{i\varphi }\sin \theta & -\sqrt{2}\cos \theta \end{matrix} \right) .       (5.272)

The diagonalization of this matrix leads to the eigenvalues \lambda _{1} =-\hbar ,\lambda _{2} =0, and \lambda _{3} =\hbar; the corresponding eigenvectors are given by

|\lambda _{1}〉=\frac{1}{2}\left(\begin{matrix} (1-\cos \theta )e^{-i\varphi } \\ -\frac{2}{\sqrt{2} }\sin \theta \\ (1+\cos \theta )e^{i\varphi } \end{matrix} \right) ,          |\lambda _{2}〉=\frac{1}{\sqrt{2} } \left(\begin{matrix} -e^{-i\varphi }\sin \theta \\ \sqrt{2}\cos \theta \\ e^{i\varphi }\sin \theta \end{matrix} \right),          (5.273)

|\lambda _{3}〉=\frac{1}{2}\left(\begin{matrix} (1+\cos \theta )e^{-i\varphi } \\ \frac{2}{\sqrt{2} }\sin \theta \\ (1-\cos \theta )e^{i\varphi } \end{matrix} \right) .                                 (5.274)

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...