Question 5.P.12: Consider a particle whose wave function is ψ(x,y,z) = 1/4√π ...

Consider a particle whose wave function is

\psi (x,y,z)=\frac{1}{4\sqrt{\pi } } \frac{2z^{2}-x^{2}-y^{2} }{r^{2} } +\sqrt{\frac{3}{\pi } } \frac{xz}{r^{2}} .

(a) Calculate \hat{\vec{L}}^{2} \psi (x,y,z) and \hat{L}_{z} \psi (x,y,z). Find the total angular momentum of this particle.

(b) Calculate \hat{L}_{+} \psi (x,y,z) and 〈\psi |\hat{L}_{+}|\psi 〉.

(c) If a measurement of the z-component of the orbital angular momentum is carried out, find the probabilities corresponding to finding the results 0, \hbar , and -\hbar .

(d) What is the probability of finding the particle at the position \theta =\pi /3 and \varphi =\pi /2 within d\theta =0.03 rad and d\varphi =0.03rad ?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since Y_{20}(x,y,z)=\sqrt{5/16\pi } (3z^{2}-r^{2})/r^{2} and Y_{2,\pm 1}(x,y,z)=\mp \sqrt{15/8\pi } (x\pm iy)z/r^{2}, we can write

\frac{2z^{2}-x^{2}-y^{2} }{r^{2} }=\frac{3z^{2}-r^{2}}{r^{2}} =\sqrt{\frac{16\pi }{5} } Y_{20}    and    \frac{xz}{r^{2}} =\sqrt{\frac{2\pi }{15} } (Y_{2,-1}-Y_{21});             (5.301)

hence

\psi (x,y,z)=\frac{1}{4\sqrt{\pi } }\sqrt{\frac{16\pi }{5} }Y_{20}+\sqrt{\frac{3}{\pi } } \sqrt{\frac{2\pi }{15} } (Y_{2,-1}-Y_{21})=\frac{1}{\sqrt{5} } Y_{20}+\sqrt{\frac{2}{5} } (Y_{2,-1}-Y_{21}).           (5.302)

Having expressed ψ in terms of the spherical harmonics, we can now easily write

\hat{\vec{L}}^{2} \psi (x,y,z)=\frac{1}{\sqrt{5} }\hat{\vec {L}}^{2}Y_{20}+\sqrt{\frac{2}{5} }\hat{\vec{L}}^{2}(Y_{2,-1}-Y_{21})=6\hbar ^{2} \psi (x,y,z).             (5.303)

and

\hat{L}_{z} \psi (x,y,z)=\frac{1}{\sqrt{5} }\hat{L}_{z} Y_{20}+\sqrt{\frac{2}{5} }\hat{L}_{z}(Y_{2,-1}-Y_{21})=-\hbar \sqrt{\frac{2}{5} }\hat{L}_{z}(Y_{2,-1}+Y_{21}).           (5.304)

This shows that \psi (x,y,z) is an eigenstate of \hat{\vec{L}}^{2} with eigenvalue 6\hbar ^{2} ;\psi (x,y,z) is, however, not an eigenstate of \hat{L}_{z}. Thus the total angular momentum of the particle is

\sqrt{〈\psi |\hat{\vec{L}}^{2}|\psi 〉} =\sqrt{6} \hbar .              (5.305)

(b) Using the relation \hat{L}_{+}Y_{lm} =\hbar \sqrt{l(l+1)-m(m+1)} Y_{l m+1}, we have

\hat{L}_{+}\psi (x,y,z)=\frac{1}{\sqrt{5} }\hat{L}_{+}Y_{20} +\sqrt{\frac{2}{5} }\hat{L}_{+}(Y_{2,-1}-Y_{21})=\hbar \sqrt{\frac {6}{5} } Y_{21}+\hbar \sqrt{\frac{2}{5} }\left(\sqrt{6} Y_{20} -2Y_{22} \right);     (5.306)

hence

〈\psi |\hat{L}_{+}|\psi 〉=\left[\frac{1}{\sqrt{5} }〈2,0|+\sqrt {\frac{2}{5} }(〈2,-1|-〈2,1|)\right]

 

\times \left[\hbar \sqrt{\frac{6}{5} }Y_{21}+\hbar \sqrt{\frac {2}{5} }\left(\sqrt{6}Y_{20}-2Y_{22} \right) \right]

=0.                                                                                                     (5.307)

(c) Since |\psi 〉=(1/\sqrt{5} )Y_{20}+\sqrt{2/5} (Y_{2,-1}-Y_{21}), a calculation of 〈\psi |\hat{L}_{z}|\psi 〉 yields

〈\psi |\hat{L}_{z}|\psi 〉=0,      with probability      P_{0} =\frac{1}{5},               (5.308)

〈\psi |\hat{L}_{z}|\psi 〉=-\hbar,      with probability       P_{-1} =\frac{2}{5},               (5.309)

〈\psi |\hat{L}_{z}|\psi 〉=\hbar,      with probability      P_{1} =\frac{2}{5}.               (5.310)

(d) Since \psi (x,y,z)=(1/4\sqrt{\pi } )(2z^{2}-x^{2}-y^{2}) /r^{2}+\sqrt{3/\pi } xz/r^{2} can be written in terms of the spherical coordinates as

\psi (\theta ,\varphi )=\frac{1}{4\sqrt{\pi } }(3\cos \theta ^{2}-1 )+\sqrt{\frac{3}{\pi } }\sin \theta \cos \theta \cos \varphi,                  (5.311)

the probability of finding the particle at the position θ and φ is

P(\theta ,\varphi)=\left|\psi (\theta ,\varphi )\right| ^{2} \sin \theta d\theta d\varphi =\left[\frac{1}{4\sqrt{\pi } }(3\cos ^{2}\theta -1 )+\sqrt{\frac{3}{\pi } }\sin \theta \cos \theta \cos \varphi \right]^{2} \sin \theta d\theta d\varphi ;     (5.312)

hence

P\left(\frac{\pi }{3},\frac{\pi }{2} \right) =\left[\frac{1}{4\sqrt {\pi } }\left(3\cos ^{2}\frac{\pi }{3}-1 \right)+0 \right] ^{2} (0.03) ^{2} \sin \frac{\pi }{3}=9.7\times 10^{-7}.              (5.313)

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...