Question 5.P.7: Consider a system of total angular momentum j = 1. As shown ...

Consider a system of total angular momentum j = 1. As shown in (5.73)

\hat{J}_{z}=\hbar \left(\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right)

and (5.75),

\hat{J}_{x}=\frac{\hbar }{\sqrt{2} } \left(\begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right) ,      \hat{J}_{y}=\frac{\hbar }{\sqrt{2} } \left(\begin{matrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end {matrix} \right)

the operators \hat{J}_{x},\hat{J}_{y}, and \hat{J}_{z} are given by

\hat{J}_{x}=\frac{\hbar }{\sqrt{2} }\left(\begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{matrix} \right),     \hat{J}_{y}= \frac{\hbar }{\sqrt{2} }\left(\begin{matrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{matrix} \right),      \hat{J}_{z}=\hbar \left(\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right) .        (5.259)

(a) What are the possible values when measuring \hat{J}_{x} ?

(b) Calculate 〈\hat{J}_{z} 〉,〈\hat{J}^{2}_{z}〉, and \Delta J_{z} if the system is in the state J_{x}=-\hbar .

(c) Repeat (b) for 〈\hat{J}_{y} 〉,〈\hat{J}^{2}_{y}〉, and \Delta J_{y} .

(d) If the system were initially in state |\psi 〉=\frac{1}{\sqrt{14} } \left(\begin{matrix} -\sqrt{3} \\ 2\sqrt{2} \\ \sqrt{3} \end{matrix} \right), what values will one obtain

when measuring \hat{J}_{x} and with what probabilities?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) According to Postulate 2 of Chapter 3, the results of the measurements are given by the eigenvalues of the measured quantity. Here the eigenvalues of \hat{J}_{x}, which are obtained by diagonalizing the matrix J_{x} are j_{x}=-\hbar ,0, and \hbar; the respective (normalized) eigenstates are

|-1〉=\frac{1}{2}\left(\begin{matrix} -1 \\ \sqrt{2} \\ -1 \end {matrix} \right) ,     |0〉=\frac{1}{\sqrt{2} } \left(\begin{matrix} -1 \\ 0 \\ 1 \end{matrix} \right),     |1〉=\frac{1}{2}\left(\begin{matrix} 1 \\ \sqrt{2} \\ 1 \end{matrix} \right).        (5.260)

(b) If the system is in the state j_{x}=-\hbar, its eigenstate is given by |-1〉 . In this case 〈\hat{J}_{z} 〉 and 〈\hat{J}^{2}_{z}〉 are given by

〈-1|\hat{J}_{z}|-1 〉=\frac{\hbar }{4} \left(\begin{matrix} -1 & \sqrt{2} & -1\end{matrix} \right) \left(\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{matrix} \right)\left(\begin{matrix} -1 \\ \sqrt{2} \\ -1 \end{matrix} \right)=0,          (5.261)

〈-1|\hat{J}^{2}_{z}|-1 〉=\frac{\hbar ^{2} }{4} \left(\begin {matrix} -1 & \sqrt{2} & -1\end{matrix} \right) \left(\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{matrix} \right)\left(\begin {matrix} -1 \\ \sqrt{2} \\ -1 \end{matrix} \right)=\frac{\hbar ^{2} }{2}.          (5.262)

Thus, the uncertainty \Delta J_{z} is given by

\Delta J_{z}=\sqrt{〈-1|\hat{J}^{2}_{z}|-1 〉-〈-1|\hat{J}_{z}|-1 〉^{2} } =\sqrt{\frac{\hbar ^{2} }{2}} =\frac{\hbar }{\sqrt{2} } .         (5.263)

(c) Following the same procedure in (b), we have

〈-1|\hat{J}_{y}|-1 〉=\frac{\hbar }{4\sqrt{2} } \left(\begin {matrix} -1 & \sqrt{2} & -1\end{matrix} \right)\left(\begin{matrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{matrix} \right)\left(\begin{matrix} -1 \\ \sqrt{2} \\ -1 \end{matrix} \right)=0,       (5.264)

〈-1|\hat{J}^{2}_{y}|-1 〉=\frac{\hbar ^{2} }{8}\left(\begin {matrix} -1 & \sqrt{2} & -1\end{matrix} \right)\left(\begin{matrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{matrix} \right)\left(\begin {matrix} -1 \\ \sqrt{2} \\ -1 \end{matrix} \right)= \frac{\hbar ^{2} }{2};        (5.265)

hence

\Delta J_{y}=\sqrt{〈-1|\hat{J}^{2}_{y}|-1 〉-〈-1|\hat{J}_{y}|-1 〉^{2} } =\frac{\hbar }{\sqrt{2} } .                    (5.266)

(d) We can express |\psi 〉=\frac{1}{\sqrt{14} } \left(\begin {matrix} -\sqrt{3} \\ 2\sqrt{2} \\ \sqrt{3} \end{matrix} \right) in terms of the eigenstates (5.260) as

\frac{1}{\sqrt{14} }\left(\begin{matrix} -\sqrt{3} \\ 2\sqrt{2} \\ \sqrt{3} \end{matrix} \right) =\sqrt{\frac{2}{7} }\frac{1}{2} \left (\begin{matrix} -1 \\ \sqrt{2} \\ -1 \end{matrix} \right)+\sqrt{\frac{3}{7} } \frac{1}{\sqrt{2} } \left(\begin{matrix} -1 \\ 0 \\ 1 \end{matrix} \right)+\sqrt{\frac{2}{7} }\frac{1}{2}\left(\begin{matrix} 1 \\ \sqrt{2} \\ 1 \end{matrix} \right)          (5.267)

or

|\psi 〉=\sqrt{\frac{2}{7} }|-1〉+\sqrt{\frac{3}{7} }|0〉+\sqrt {\frac{2}{7} }|1〉.                          (5.268)

A measurement of \hat{J}_{x} on a system initially in the state (5.268) yields a value J_{x}=-\hbar with probability

P_{-1} =\left|〈-1|\psi 〉\right| ^{2} =\left|\sqrt{\frac{2}{7} }〈-1|-1〉+\sqrt{\frac{3}{7}}〈-1|0〉+\sqrt{\frac{2}{7} }〈-1|1〉 \right| ^{2} =\frac{2}{7} ,            (5.269)

since 〈-1|0〉=〈-1|1〉=0 and 〈-1|-1〉=1, and the values J_{x}=0 and J_{x}=\hbar with the
respective probabilities

P_{0} =\left|〈0|\psi 〉\right| ^{2} =\left|\sqrt{\frac{3}{7}}〈0|0〉\right| ^{2} =\frac{3}{7},             P_{1} =\left|〈1|\psi 〉\right| ^{2} =\left|\sqrt{\frac{2}{7}}〈1|1〉\right| ^{2} =\frac{2}{7}.             (5.270)

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...