Question 5.P.9: Consider a system which is initially in the state ψ (θ, φ) =...

Consider a system which is initially in the state

\psi (\theta ,\varphi )=\frac{1}{\sqrt{5} } Y_{1} ,-1(\theta ,\varphi )+\sqrt{\frac{3}{5} } Y_{10}(\theta ,\varphi )+\frac{1}{\sqrt{5} }Y_{11}(\theta ,\varphi ).

(a) Find 〈\psi |\hat{L}_{+}| \psi 〉.

(b) If \hat{L}_{z} were measured what values will one obtain and with what probabilities?

(c) If after measuring \hat{L}_{z} we find l_{z} =-\hbar , calculate the uncertainties \Delta L_{x} and \Delta L_{y} and their product \Delta L_{x}  \Delta L_{y}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Let us use a lighter notation for |\psi〉 :|\psi〉 =\frac{1}{\sqrt{5} }|1,-1〉 +\sqrt{\frac{3}{5} }|1,0〉 +\frac{1}{\sqrt{5} }|1,1〉.

From (5.56)

\hat{J}_{\pm }|j,m〉 =\hbar \sqrt{(j\mp m)(j\pm m+1)} |j,m\pm 1〉.

we can write \hat{L}_{+}|l,m 〉= \hbar \sqrt{l(l+1)-m(m+1)} |l,m+1 〉; hence the only terms that survive in 〈\psi |\hat{L}_{+}| \psi〉 are

〈\psi |\hat{L}_{+}| \psi〉=\frac{\sqrt{3} }{5} 〈1,0|\hat{L}_{+} |1,-1〉 +\frac{\sqrt{3} }{5} 〈1,1|\hat{L}_{+}|1,0〉 =\frac{2\sqrt{6} }{5} \hbar,          (5.275)

since 〈1,0|\hat{L}_{+}|1,-1〉 = 〈1,1|\hat{L}_{+}|1,0〉 =\sqrt{2} \hbar .

(b) If \hat{L}_{z} were measured, we will find three values l_{z} =-\hbar ,0, and \hbar. The probability of finding the value l_{z} =-\hbar is

P_{-1} =\left| 〈1,-1|\psi〉 \right| ^{2} =\left|\frac{1}{\sqrt{5} } 〈1,-1|1,-1〉 +\sqrt{\frac{3}{5} } 〈1,-1|1,0〉 +\frac{1}{\sqrt{5} } 〈1,-1|1,1〉 \right| ^{2}

=\frac{1}{5},                                                                    (5.276)

since 〈1,-1|1,0〉 = 〈1,-1|1,1 〉=0 and 〈1,-1|1,-1〉 =1 . Similarly, we can verify that the probabilities of measuring l_{z}=0 and \hbar are respectively given by

P_{0} =\left| 〈1,0|\psi〉 \right| ^{2} =\left|\sqrt{\frac{3}{5} } 〈1,0|1,0〉\right| ^{2} =\frac{3}{5},                (5.277)

P_{1} =\left| 〈1,1|\psi〉 \right| ^{2} =\left|\sqrt{\frac{1}{5} } 〈1,1|1,1〉\right| ^{2} =\frac{1}{5}.                   (5.278)

(c) After measuring l_{z} =-\hbar the system will be in the eigenstate |lm〉=|1,-1〉, that is, \psi (\theta ,\varphi )=Y_{1} ,-1(\theta ,\varphi ). We need first to calculate the expectation values of \hat{L}_{x},\hat{L}_{y}, \hat {L}^{2}_{x}, and \hat{L}^{2}_{y} using |1,-1〉. Symmetry requires that 〈1,-1|\hat{L}_{x}|1,-1 〉=〈1,-1|\hat{L}_{y}|1,-1 〉=0.

The expectation values of \hat{L}^{2}_{x} and \hat{L}^{2}_{y} are equal, as shown in (5.60);

〈\hat{J}^{2}_{x} 〉=〈\hat{J}^{2}_{y} 〉=\frac{1}{2}\left [〈j,m|\hat{\vec{J}}^{2}|j,m 〉 -〈j,m|\hat{J}^{2}_{z}|j,m 〉\right] =\frac{\hbar ^{2} }{2} \left[j(j+1)-m^{2} \right].

they are given by

〈\hat{L}^{2}_{x} 〉=〈\hat{L}^{2}_{y} 〉=\frac{1}{2}[〈\hat{\vec {L}}^{2}-\hat{L}^{2}_{z}〉]=\frac{\hbar ^{2} }{2}\left[l(l+1)-m^{2} \right]=\frac{\hbar ^{2} }{2};                (5.279)

in this relation, we have used the fact that l = 1 and m = -1. Hence

\Delta L_{x}=\sqrt{〈\hat{L}^{2}_{x} 〉} =\frac{\hbar }{\sqrt{2} } =\Delta L_{y},                        (5.280)

and the uncertainties product \Delta L_{x}  \Delta L_{y} is given by

\Delta L_{x} \Delta L_{y}=\sqrt{〈\hat{L}^{2}_{x} 〉〈\hat {L}^{2}_{y} 〉} =\frac{\hbar ^{2} }{2}.                        (5.281)

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...