Consider the cantilever beam illustrated in Example 9.28. Using Castigliano’s theorem, determine the size of the cross-section of the beam.
Consider the cantilever beam illustrated in Example 9.28. Using Castigliano’s theorem, determine the size of the cross-section of the beam.
\text { Given } \delta_{\max }=0.05 mm \quad E=207000 N / mm ^{2} .
P = 500 N
Step I Deflection by Castigliano’s theorem
Let us denote by P the force at the free end of the cantilever beam. The bending moment at a distance x from the fixed end is given by,
M_{b}=P(200-x) (i).
The above relationship can be used for any point from A to C. Differentiating with respect to P,
\frac{\partial}{\partial P}\left(M_{b}\right)=(200-x) (ii).
The total strain energy stored in the beam is given by
U=U_{A B}+U_{B C} .
From Eq. (9.56),
U=\int \frac{\left(M_{b}\right)^{2} d x}{2 E I} (9.56).
U=\int_{0}^{100} \frac{\left(M_{b}\right)^{2} d x}{2 E I^{\prime}}+\int_{100}^{200} \frac{\left(M_{b}\right)^{2} d x}{2 E I} (iii).
By Castigliano’s theorem,
\delta_{\max }=\frac{\partial U}{\partial P} (iv).
From (iii) and (iv),
\delta_{\max .}=\int_{0}^{100}\left(\frac{2\left(M_{b}\right)}{2 E I^{\prime}}\right)\left(\frac{\partial\left(M_{b}\right)}{\partial P}\right) d x+\int_{100}^{200}\left(\frac{2\left(M_{b}\right)}{2 E I}\right)\left(\frac{\partial\left(M_{b}\right)}{\partial P}\right) d x .
Substituting (i) and (ii) in the above expression,
\delta_{\max .}=\frac{P}{E I^{\prime}} \int_{0}^{100}(200-x)^{2} d x+\frac{P}{E I} \int_{100}^{200}(200-x)^{2} d x .
On integration, we get,
\delta_{\max .}=\frac{\left(7 \times 10^{6}\right) P}{3 E I^{\prime}}+\frac{\left(10^{6}\right) P}{3 E I} .
Substituting the values of P and I′ in the above equation,
\delta_{\max }=\frac{\left(729.19 \times 10^{6}\right)}{E I} mm .
Step II Diameter of beam
The permissible deflection is 0.05 mm. Therefore,
0.05=\frac{\left(729.19 \times 10^{6}\right)}{(207000)\left(\pi d^{4} / 64\right)} .
∴ d = 34.61 mm.