Question 9.29: Consider the cantilever beam illustrated in Example 9.28. Us...

Consider the cantilever beam illustrated in Example 9.28. Using Castigliano’s theorem, determine the size of the cross-section of the beam.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } \delta_{\max }=0.05 mm \quad E=207000 N / mm ^{2} .

P = 500 N
Step I Deflection by Castigliano’s theorem
Let us denote by P the force at the free end of the cantilever beam. The bending moment at a distance x from the fixed end is given by,

M_{b}=P(200-x)                  (i).

The above relationship can be used for any point from A to C. Differentiating with respect to P,

\frac{\partial}{\partial P}\left(M_{b}\right)=(200-x)                (ii).

The total strain energy stored in the beam is given by

U=U_{A B}+U_{B C} .

From Eq. (9.56),

U=\int \frac{\left(M_{b}\right)^{2} d x}{2 E I}                     (9.56).

U=\int_{0}^{100} \frac{\left(M_{b}\right)^{2} d x}{2 E I^{\prime}}+\int_{100}^{200} \frac{\left(M_{b}\right)^{2} d x}{2 E I}           (iii).

By Castigliano’s theorem,

\delta_{\max }=\frac{\partial U}{\partial P}                 (iv).

From (iii) and (iv),

\delta_{\max .}=\int_{0}^{100}\left(\frac{2\left(M_{b}\right)}{2 E I^{\prime}}\right)\left(\frac{\partial\left(M_{b}\right)}{\partial P}\right) d x

+\int_{100}^{200}\left(\frac{2\left(M_{b}\right)}{2 E I}\right)\left(\frac{\partial\left(M_{b}\right)}{\partial P}\right) d x .

Substituting (i) and (ii) in the above expression,

\delta_{\max .}=\frac{P}{E I^{\prime}} \int_{0}^{100}(200-x)^{2} d x

+\frac{P}{E I} \int_{100}^{200}(200-x)^{2} d x .

On integration, we get,

\delta_{\max .}=\frac{\left(7 \times 10^{6}\right) P}{3 E I^{\prime}}+\frac{\left(10^{6}\right) P}{3 E I} .

Substituting the values of P and I′ in the above equation,

\delta_{\max }=\frac{\left(729.19 \times 10^{6}\right)}{E I} mm .

Step II Diameter of beam
The permissible deflection is 0.05 mm. Therefore,

0.05=\frac{\left(729.19 \times 10^{6}\right)}{(207000)\left(\pi d^{4} / 64\right)} .

∴          d = 34.61 mm.

Related Answered Questions