Question 7.13: Consider the chemical compound drawn below: CH3-CH2-CHCl-CH=...

Consider the chemical compound drawn below:

\rm CH_3-CH_2-CHCl-CH=CH-CHF-CH_2-CH_3

A) Estimate the critical temperature and critical pressure using the Joback method.
B) Estimate the acentric factor of this compound by identifying structurally similar compounds in Appendix C and assuming similar compounds have similar acentric factors.
C) Critically examine the data in Appendix C. How accurate do you consider your estimate from part B? (Use your estimated ω for parts D and E, even if you don’t consider it very good.)
D) Give your best estimate the molar volume at P=5 bar and T=500 K.
E) Give your best estimate of the molar volume at P=5 bar and T=800 K

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A)

\begin{aligned} & \mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{b}}\left[0.584+0.965 \sum \mathrm{T}_{\mathrm{b}}-\left(\sum \mathrm{T}_{\mathrm{b}}\right)^2\right]^{-1} \\ & \mathrm{P}_{\mathrm{c}}=\left(0.113+0.0032 \mathrm{n}_{\mathrm{a}}-\sum \mathrm{P}_{\mathrm{c}}\right)^{-2} \\ & \mathrm{~T}_{\mathrm{b}}=198.2+\sum \mathrm{T}_{\mathrm{b}}\end{aligned}

Group Occurrence Tb Tc Pc
-CH3 2 23.58 0.0141 -0.0012
-CH2- 2 22.88 0.0189 0
>CH- 2 21.74 0.0164 0.002
=CH- 2 24.96 0.0129 -0.0006
F 1 -0.03 0.011 -0.0057
Cl 1 38.13 0.0105 -0.0049

\begin{array}{|c|c|} \hline\sum{\rm T_b} & 224.42\\ \hline \sum{\rm T_c} & 0.1461\\ \hline \sum{\rm P_c} & -0.0102\\ \hline \sum{\rm \Delta H_{form}} & -381.93\\ \hline \rm n_a & 24\\ \hline \end{array}

\begin{aligned} & \bf T_c=600.61 K \\ & \bf P_c=25~ \mathbf{bar}\end{aligned}

B) The compound is an octene with two halogen substitutions. Estimate the acentric factor to be about 0.39. This is based on octane having an acentric factor of 0.399, and the fact that butene has a slightly smaller (~0.01) acentric factor than butane, as propene has a slightly smaller acentric factor than propane.

C) While the analogy described above makes sense based upon the limited selection of compounds available in Appendix C, it does not account for the halogen substitutions in any way, and so can’t be considered very meaningful.

D)

P=\frac{R T}{\underline{V}-b}-\frac{a}{\underline{V}(\underline{V}+b)+b(\underline{V}-b)}

Determine reduced properties

\begin{aligned}& \mathrm{T}_{\mathrm{r}}=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}=\frac{500 \mathrm{~K}}{600.61 \mathrm{~K}}=0.8324 \\& \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}=\frac{5~ \mathrm{bar}}{25~ \mathrm{bar}}=0.2\end{aligned}

We had found the accentric factor previously

ω = 0.39

Find k

k = 0.3746 + 1.54226ω − 0.2699 ω² = 0.935

Find α

\alpha=\left(1+\mathrm{k}\left(1-\mathrm{T}_{\mathrm{r}}^{0.5}\right)\right)^2=1.171

Find a_c

\mathrm{a}_{\mathrm{c}}=\frac{0.45724 \mathrm{R}^2 \mathrm{~T}_{\mathrm{c}}^2}{\mathrm{P}_{\mathrm{c}}}=4.56 \times 10^7 \frac{\mathrm{cm}^6 ~\mathrm{bar}}{\mathrm{mol}^2}

Find a

\mathrm{a}=\mathrm{a}_{\mathrm{c}} \alpha=5.34 \times 10^7 \frac{\mathrm{cm}^6~ \mathrm{bar}}{\mathrm{mol}^2}

Find b

\mathrm{b}=\frac{0.07780 \mathrm{RT}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}=155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}}

\begin{aligned}& 5~ \mathrm{bar}=\frac{\left(83.14 \frac{\mathrm{cm}^3 ~\mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right) 500 \mathrm{~K}}{\underline{\mathrm{V}}-155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}}} \\& \quad-\frac{5.34 \times 10^7 \frac{\mathrm{cm}^6 ~\mathrm{bar}}{\mathrm{mol}^2}}{\underline{\mathrm{V}}\left(\underline{\mathrm{V}}+\left(155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)\right)+155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\left(\underline{\mathrm{V}}-\left(155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)\right)} \\& \underline{V}^{\mathbf{L}}=\mathbf{2 3 6 . 7} \frac{\mathbf{c m}^3}{\mathbf{m o l}^{\mathbf{m o l}}} \\& \underline{\mathbf{V}}^{\mathbf{V}}=\mathbf{7 0 5 0} \frac{\mathbf{c m}^3}{\mathbf{m o l}^3}\end{aligned}

Unclear whether the compound is a liquid or a vapor at this temperature and pressure.

E)

P=\frac{\mathrm{RT}}{\underline{\mathrm{V}}-\mathrm{b}}-\frac{\mathrm{a}}{\underline{\mathrm{V}}(\underline{\mathrm{V}}+\mathrm{b})+\mathrm{b}(\underline{\mathrm{V}}-\mathrm{b})}

Determine reduced properties

\begin{aligned}& \mathrm{T}_{\mathrm{r}}=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}=\frac{800 \mathrm{~K}}{600.61 \mathrm{~K}}=1.33 \\& \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}=\frac{5~ \mathrm{bar}}{25~ \mathrm{bar}}=0.2\end{aligned}

We had found the accentric factor previously

ω = 0.38

Find k

k = 0.3746 + 1.54226ω − 0.2699 ω² = 0.935

Find α

\alpha=\left(1+\mathrm{k}\left(1-\mathrm{T}_{\mathrm{r}}^{0.5}\right)\right)^2=0.734

Find a_c

\mathrm{a}_{\mathrm{c}}=\frac{0.45724 \mathrm{R}^2 \mathrm{~T}_{\mathrm{c}}^2}{\mathrm{P}_{\mathrm{c}}}=4.56 \times 10^7 \frac{\mathrm{cm}^6 ~\mathrm{bar}}{\mathrm{mol}^2}

Find a

\mathrm{a}=\mathrm{a}_{\mathrm{c}} \alpha=3.35 \times 10^7 \frac{\mathrm{cm}^6~ \mathrm{bar}}{\mathrm{mol}^2}

Find b

\begin{aligned}& \mathrm{b}=\frac{0.07780 \mathrm{RT}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}=155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}} \\& 5~ \mathrm{bar}=\frac{\left(83.14 \frac{\mathrm{cm}^3 ~\mathrm{bar}}{\mathrm{mol} \,\mathrm{K}}\right) 800 \mathrm{~K}}{\underline{\mathrm{V}}-155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}}} \\& -\frac{15.35 \times 10^7 \frac{\mathrm{cm}^6~ \mathrm{bar}}{\mathrm{mol}^2}}{\underline{\mathrm{V}}\left(\underline{\mathrm{V}}+\left(155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)\right)+155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}^3}\left(\underline{\mathrm{V}}-\left(155.39 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)\right)} \\& \underline{\mathrm{V}}=\mathbf{1 2 9 6 0} \frac{\mathbf{c m}^3}{\mathbf{m o l}^3}\end{aligned}

Related Answered Questions