Question 2.4.1: Consider the spring-mass system in Figure 2.4.1. Assume that...

Consider the spring-mass system in Figure 2.4.1. Assume that spring k_{1} has spring constant k_{1} = 2 \ {N}/{m}, spring k_{2} has spring constant k_{2} = 4 \ {N}/{m}, and spring k_{3} has spring constant k_{3} = 3 \ {N}/{m}. Find the equilibrium displacements x_{1}, x_{2} if forces f_{1} = 10 \ N and f_{2} = 5 \ N are applied to masses m_{1} and m_{2} respectively.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Our work above shows us that we just need to solve the system of linear equations

(2 + 4)x_{1} – 4x_{2} = 10 \\  -4x_{1} + (4 + 3)x_{2} = 5

Row reducing the corresponding augmented matrix gives

\left [ \begin{matrix} 6 & -4 \\ -4 & 7 \end{matrix} \left | \begin{matrix} 10 \\ 5 \end{matrix} \right. \right ] \thicksim \left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \left | \begin{matrix} 45/13 \\ 35/13 \end{matrix} \right.\right]

Hence, the equilibrium displacements are x_{1} = {45}/{13} \ m and x_{2} = {35}/{13} \ m.

Related Answered Questions

We use Kirchhoff’s Voltage Law on each of the four...