Question 1.5: Consider the wave function Ψ (x,t) = A e^-λ|x|e ^- iωt, wher...

Consider the wave function

Ψ (x,t) = A e{^-λ\left|x\right| } e ^{- iωt} ,

where A, , and ω are positive real constants. (We’ll see in Chapter 2 for what potential (V) this wave function satisfies the Schrödinger equation.)

(a) Normalize Ψ.

(b) Determine the expectation values of x and x^2   .

(c) Find the standard deviation of x. Sketch the graph of \left|Ψ\right|^2 as a function of x, and mark the points (\left\langle x\right\rangle + σ) and (\left\langle x\right\rangle - σ) ,to illustrate the sense in which σ represents the “spread” in x. What is the probability that the particle would be found outside this range?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

1 = \int{\left|\Psi \right|^2 } dx = 2\left|A\right| ^2 \int_{0}^{\infty }{e^{-2\lambda x}}dx = 2\left|A\right| ^2 \biggl(\frac{e^{-2\lambda x}}{-2\lambda }\biggr) \mid ^\infty _0 = \frac{2\left|A\right| ^2}{λ} ; A = \sqrt{\lambda } .

(b)

\left\langle x\right\rangle = \int {\left|\Psi \right|^2 } dx  = \left|A\right| ^2 \int_{-\infty}^{\infty }{x e^{-2λ \left|\x \right|}}dx = 0 .    [Odd integrand.]

\left\langle x\right\rangle^2 = 2\left|A\right| ^2 \int_{0}^{\infty }{x^2 e^{-2λ x}}dx = 2λ \biggl[\frac{2}{(2λ)^3}\biggr]  = \frac{1}{2λ^2} .

(c)

σ^2 = \left\langle x^2\right\rangle – \left\langle x\right\rangle^2 = \frac{1}{2λ^2} ;    σ = \frac{1}{\sqrt{2} λ}.

\left|\Psi (\pm \sigma )\right| ^2 = \left|A\right|^2 e^{-2\lambda \sigma } = \lambda e^{-2\lambda /\sqrt{2}\lambda } = \lambda e^{-\sqrt{2} } = 0.2441 \lambda .

Probability outside:

2 \int_{σ}^{\infty }{\left|\Psi \right| ^2 }dx = 2 \left| A \right| ^2 \int_{σ}^{\infty }{e^{-2λx}}dx = 2 λ \Bigl(\frac{e^{-2\lambda x}}{-2\lambda }\Bigr)\mid ^\infty _\sigma = e^{-2\lambda \sigma } = e^{-\sqrt{2} } = 0.2431 .

3

Related Answered Questions