Question 3.67:  Consider two shafts in torsion, each of the same material, ...

Consider two shafts in torsion, each of the same material, length, and cross-sectional area. One

shaft has a solid square cross section and the other shaft has a solid circular section.

(a) Which shaft has the greater maximum shear stress and by what percentage?

(b) Which shaft has the greater angular twist θ and by what percentage?

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

 

For a square cross section with side length  b and a circular section with diameter  d

A_{\text {square }}=A_{\text {circular }} \quad \Rightarrow \quad b^{2}=\frac{\pi}{4} d^{2} \quad \Rightarrow \quad b=\frac{\sqrt{\pi}}{2} d

 

From Eq. (3-40) with  b=c

\left(\tau_{\max }\right)_{\text {square }}=\frac{T}{b c^{2}}\left(3+\frac{1.8}{b / c}\right)=\frac{T}{b^{3}}\left(3+\frac{1.8}{1}\right)=\frac{T}{d^{3}}\left(\frac{2}{\sqrt{\pi}}\right)^{3}(4.8)=6.896 \frac{T}{d^{3}}

 

For the circular cross section,

\begin{aligned}&\left(\tau_{\max }\right)_{\text {circular }}=\frac{16 T}{\pi d^{3}}=5.093 \frac{T}{d^{3}} \\&\frac{\left(\tau_{\max }\right)_{\text {square }}}{\left(\tau_{\max }\right)_{\text {circular }}}=\frac{6.896 \frac{T}{d^{3}}}{5.093 \frac{T}{d^{3}}}=1.354\end{aligned}

 

The shear stress in the square cross section is  35.4 \% greater.  .

(b) For the square cross section, from the table on p.  102, \beta=0.141 . From Eq. (3-41),

\theta_{\text {square }}=\frac{T l}{\beta b c^{3} G}=\frac{T l}{\beta b^{4} G}=\frac{T l}{0.141\left(\frac{\sqrt{\pi}}{2} d\right)^{4} G}=11.50 \frac{T l}{d^{4} G}

 

For the circular cross section,

\begin{aligned}&\theta_{r d}=\frac{T l}{G J}=\frac{T l}{G\left(\pi d^{4} / 32\right)}=10.19 \frac{T l}{d^{4} G} \\&\frac{\theta_{s q}}{\theta_{r d}}=\frac{11.50 \frac{T l}{d^{4} G}}{10.19 \frac{T l}{d^{4} G}}=1.129\end{aligned}

 

The angle of twist in the square cross section is  12.9 \% greater.  .

 

 

Eq. (3-41):

\theta=\frac{T l}{\beta b c^{3} G}

Eq. (3-40):

\tau_{\max }=\frac{T}{\alpha b c^{2}} \doteq \frac{T}{b c^{2}}\left(3+\frac{1.8}{b / c}\right)

table on p.102

b/c 1 1.5 1.75 2 2.5 3 4 6 8 10
α 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.299 0.307 0.313 0.333
β 0.141 0.196 0.214 0.228 0.249 0.263 0.281 0.299 0.307 0.313 0.333

Related Answered Questions