Holooly Plus Logo

Question 5.8: Constant-Viscosity Momentum Balances in Terms of Velocity Gr...

Constant-Viscosity Momentum

Balances in Terms of Velocity Gradients

Verify the first of the three momentum balances of Eqn. (5.67) by starting from the x momentum balance of Eqn. (5.54) and substituting for the stresses \sigma_{x x}, \tau_{y x}, and \tau_{z x} from Eqns. (5.60) and (5.61).

\begin{array}{c}+\rho g_{x}+\frac{1}{3} \mu \frac{\partial}{\partial x} \nabla \cdot \mathbf{v}, \\ \rho\left(\frac{\partial v_{y}}{\partial t}+v_{x} \frac{\partial v_{y}}{\partial x}+v_{y} \frac{\partial v_{y}}{\partial y}+v_{z} \frac{\partial v_{y}}{\partial z}\right)=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial^{2} v_{y}}{\partial y^{2}}+\frac{\partial^{2} v_{y}}{\partial z^{2}}\right)\\ +\rho g_{y}+\frac{1}{3} \mu \frac{\partial}{\partial y} \nabla \cdot \mathbf{v}, \\ \rho\left(\frac{\partial v_{z}}{\partial t}+v_{x} \frac{\partial v_{z}}{\partial x}+v_{y} \frac{\partial v_{z}}{\partial y}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left(\frac{\partial^{2} v_{z}}{\partial x^{2}}+\frac{\partial^{2} v_{z}}{\partial y^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right)\\+\rho g_{z}+\frac{1}{3} \mu \frac{\partial}{\partial z} \nabla \cdot \mathbf{v}.     (5.67) \end{array}

 

\begin{aligned} \rho \frac{\mathcal{D} v_{x}}{\mathcal{D} t} &=\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}+\rho g_{x}, \\ \rho \frac{\mathcal{D} v_{y}}{\mathcal{D} t} &=\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z}+\rho g_{y}, \\ \rho \frac{\mathcal{D} v_{z}}{\mathcal{D} t} &=\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}+\rho g_{z}.     (5.54) \end{aligned}

 

\begin{aligned}\tau_{x y} &=\tau_{y x}=\mu\left(\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right), \\ \tau_{y z} &=\tau_{z y}=\mu\left(\frac{\partial v_{y}}{\partial z}+\frac{\partial v_{z}}{\partial y}\right), \\ \tau_{z x} &=\tau_{x z}=\mu\left(\frac{\partial v_{z}}{\partial x}+\frac{\partial v_{x}}{\partial z}\right).     (5.60)\end{aligned}

 

\begin{aligned} \sigma_{x x} &=-p+2 \mu \frac{\partial v_{x}}{\partial x}-\frac{2}{3} \mu \nabla \cdot \mathbf{v}, \\ \sigma_{y y} &=-p+2 \mu \frac{\partial v_{y}}{\partial y}-\frac{2}{3} \mu \nabla \cdot \mathbf{v}, \\ \sigma_{z z} &=-p+2 \mu \frac{\partial v_{z}}{\partial z}-\frac{2}{3} \mu \nabla \cdot \mathbf{v}.     (5.61) \end{aligned}
The "Step-by-Step Explanation" refers to a detailed and sequential breakdown of the solution or reasoning behind the answer. This comprehensive explanation walks through each step of the answer, offering you clarity and understanding.
Our explanations are based on the best information we have, but they may not always be right or fit every situation.
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Related Answered Questions