Question 2.23: Delta functions live under integral signs, and two expressio...

Delta functions live under integral signs, and two expressions (D_1(x) and D_2(x)) involving delta functions are said to be equal if

\int_{-\infty}^{+\infty} f(x) D_{1}(x) d x=\int_{-\infty}^{+\infty} f(x) D_{2}(x) d x ,

for every (ordinary) function f(x) .

(a) Show that

\delta(c x)=\frac{1}{|c|} \delta(x) ,      (2.145)

where c is a real constant. (Be sure to check the case where c is negative.)

(b) Let θ(x) be the step function:

\theta(x) \equiv \begin{cases}1, & x>0 \\ 0, & x<0\end{cases}   (2.146).

(In the rare case where it actually matters, we define θ(0) to be 1/2.) Show that dθ/dx = δ(x).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Let y \equiv c x so d x=\frac{1}{c} d y .\left\{\begin{array}{l} \text { If } c>0, y:-\infty \rightarrow \infty \\ \text { If } c<0, y: \infty \rightarrow-\infty \end{array}\right\} .

\int_{-\infty}^{\infty} f(x) \delta(c x) d x=\left\{\begin{array}{l} \frac{1}{c} \int_{-\infty}^{\infty} f(y / c) \delta(y) d y=\frac{1}{c} f(0) \quad(c>0) ; \text { or } \\ \frac{1}{c} \int_{\infty}^{-\infty} f(y / c) \delta(y) d y=-\frac{1}{c} \int_{-\infty}^{\infty} f(y / c) \delta(y) d y=-\frac{1}{c} f(0)(c<0) \end{array}\right. .

In either case, \int_{-\infty}^{\infty} f(x) \delta(c x) d x=\frac{1}{|c|} f(0)=\int_{-\infty}^{\infty} f(x) \frac{1}{|c|} \delta(x) d x . \text { So } \delta(c x)=\frac{1}{|c|} \delta(x) .

(b)

\int_{-\infty}^{\infty} f(x) \frac{d \theta}{d x} d x=\left.f \theta\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{d f}{d x} \theta d x , (integration by parts).

=f(\infty)-\int_{0}^{\infty} \frac{d f}{d x} d x=f(\infty)-f(\infty)+f(0)=f(0)=\int_{-\infty}^{\infty} f(x) \delta(x) d x .

So dθ/dx = δ(x). [Makes sense: The θ function is constant (so derivative is zero) except at x = 0, where the derivative is infinite.].

Related Answered Questions