Delta functions live under integral signs, and two expressions (D_1(x) and D_2(x)) involving delta functions are said to be equal if
\int_{-\infty}^{+\infty} f(x) D_{1}(x) d x=\int_{-\infty}^{+\infty} f(x) D_{2}(x) d x ,
for every (ordinary) function f(x) .
(a) Show that
\delta(c x)=\frac{1}{|c|} \delta(x) , (2.145)
where c is a real constant. (Be sure to check the case where c is negative.)
(b) Let θ(x) be the step function:
\theta(x) \equiv \begin{cases}1, & x>0 \\ 0, & x<0\end{cases} (2.146).
(In the rare case where it actually matters, we define θ(0) to be 1/2.) Show that dθ/dx = δ(x).