Question 16.2: Derive Freudenstein’s equation for a four bar linkage.

Derive Freudenstein’s equation for a four bar linkage.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Consider a four-bar mechanism as shown in Fig.16.16 in equilibrium. The magnitudes of the links AB, BC, CD and DA are a, b, c and d respectively. θ, β and Φ are the angles of AB, BC and DC respectively with the x-axis. AD is the fixed link. AB is the input link and DC the output link.
The displacement along x-axis is,

a \cos \theta+b \cos \beta=d+c \cos \phi .

or        b \cos \beta=c \cos \phi-a \cos \theta+d .

or        (b \cos \beta)^{2}=(c \cos \phi-a \cos \theta+d)^{2} .

=c^{2} \cos ^{2} \phi+a^{2} \cos ^{2} \theta+d^{2}-2 a c \cos \theta \cos \phi-2 a d \cos \theta+2 c d \cos \phi             (1).

The displacement along y-axis is,

a \sin \theta+b \sin \beta=c \sin \phi .

or          b \sin \beta=c \sin \phi-a \sin \theta .

or          (b \sin \beta)^{2}=(c \sin \phi-a \sin \theta)^{2} .

=c^{2} \sin ^{2} \phi+a^{2} \sin ^{2} \theta-2 a c \sin \theta \sin \phi        (2).

Adding Eqs. (1) and (2), we get

b^{2}=c^{2}+a^{2}+d^{2}-2 a c(\sin \theta \sin \phi+\cos \theta \cos \phi)-2 a d \cos \theta+2 c d \cos \phi .

or    2 c d \cos \phi-2 a d \cos \theta+a^{2}-b^{2}+c^{2}+d^{2}=2 a c(\sin \theta \sin \phi+\cos \theta \cos \phi) .

Dividing throughout by 2ac, we get

\frac{d}{a} \cos \phi-\frac{d}{c} \cos \theta+\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c}=\cos (\phi-\theta)=\cos (\theta-\phi) .

or    k_{1} \cos \phi+k_{2} \cos \theta+k_{3}=\cos (\theta-\phi)         (16.9).

where            k_{1}=\frac{d}{a}, k_{2}=\frac{-d}{c}, \text { and } k_{3}=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c} .

Eq. (16.9) is known as Freudenstein equation.

16.16

Related Answered Questions