Question : Derive the linked interpolation of Eq.(2.68) for the 2-noded...

Derive the linked interpolation of Eq.(2.68) for the 2-noded Timoshenko beam element.

Eq.(2.68)  : w=\frac{1}{2}\left ( 1-\xi \right )w_{1}+\frac{1}{2}\left ( 1+\xi \right )w_{2}+\left ( 1-\xi ^{2} \right )\frac{l^{(e)}}{8}\left ( \theta _{1}-\theta _{2} \right )

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The starting point is the 3-noded Timoshenko beam element with node numbers 1,3,2 where node number 3 corresponds to the mid-node. The original quadratic interpolation for the deflection and the rotation is

 

w=\frac{1}{2}\left ( \xi -1 \right )\xi w_{1}+\left ( 1-\xi ^{2} \right )w_{3}+\frac{1}{2}\left ( \xi +1 \right )\xi w_{2}

 

\theta =\frac{1}{2}\left ( \xi -1 \right )\xi \theta_{1}+\left ( 1-\xi ^{2} \right )\theta_{3}+\frac{1}{2}\left ( \xi +1 \right )\xi \theta_{2}

 

The transverse shear strain is obtained by

 

\gamma _{xz}=\frac{\mathrm{d} w}{\mathrm{d} x}-\theta =\frac{2}{l^{(e)}}\left ( \xi -\frac{1}{2} \right )w_{1}-\frac{\varepsilon }{2}w_{3}+\frac{2}{l^{(e)}}\left ( \xi +\frac{1}{2} \right )w_{2}-\frac{1}{2}\left ( \xi -1 \right )\xi \theta _{1}-\left ( 1-\xi ^{2} \right )\theta _{3}-\frac{1}{2}\left ( \xi +1 \right )\xi \theta _{2}=\frac{w_{2}-w_{1}}{l^{(e)}}+\frac{2}{l^{(e)}}\xi \left ( w_{1}-2w_{3}+w_{2} \right )-\theta _{3}-\frac{\xi }{2}\left ( \theta _{1} -\theta _{2}\right )-\frac{\xi ^{2}}{2}\left ( \theta _{1}-2\theta _{3} +\theta _{2}\right )=0

 

Clearly, \gamma _{xz} should vanish for slender (Euler-Bernoulli) beams. This is achievable for the above interpolation if the linear and quadratic terms in \xi are zero and \gamma _{xz} is simply expressed as

 

\gamma _{xz}=\frac{w_{2}-w_{1}}{l^{(e)}}-\theta _{3}

 

The condition \gamma _{xz}=0 implies \frac{w_{2}-w_{1}}{l^{(e)}}=\theta _{3} , i.e. the average slope equals the rotation at the mid-node, which is a physical condition for slender beams.
The vanishing of the linear and quadratic terms in the original quadratic expression for \gamma _{xz} yields the following two conditions

 

\frac{2}{l^{(e)}}\left ( w_{1}-2w_{3}+w_{2} \right )-\frac{\theta _{1}-\theta _{2}}{2}=0

 

\theta _{1}-2\theta _{3}+\theta _{2}=0

 

From the above we obtain

 

w_{3}=\frac{w_{1}+w_{3}}{2}-\frac{\theta _{1}-\theta _{2}}{8}l^{(e)}

 

\theta _{3}=\frac{\theta _{1}+\theta _{2}}{2}

 

Substituting these values into the original quadratic interpolation gives, after some algebra

 

w=\frac{1}{2}\left ( 1-\xi \right )w_{1}+\frac{1}{2}\left ( 1+\xi \right )w_{2}+\left ( 1-\xi ^{2} \right )\frac{l^{(e)}}{8}\left ( \theta _{1}-\theta _{2} \right )

 

\theta =\frac{1}{2}\left ( 1-\xi \right )\theta _{1}+\frac{1}{2}\left ( 1+\xi \right )\theta _{2}

 

which is the linked interpolation (2.68) we are looking for. It can be verified that the above interpolation yields the constant transverse shear strain field of Eq.(2.68).