“Derive” the Lorentz force law, as follows: Let charge q be at rest in \overline{ S }, \text { so } \overline{ F }=q \overline{ E }, \text { and let } \overline{ S } move with velocity v =v \hat{ x } with respect to S. Use the transformation rules (Eqs. 12.67 and 12.109) to rewrite \overline{ F } in terms of F, and \overline{ E } in terms of E and B. From these, deduce the formula for F in terms of E and B.
\overline{ F }_{\perp}=\frac{1}{\gamma} F _{\perp}, \quad \bar{F}_{\|}=F_{\|} (12.67)
\begin{aligned}&\bar{E}_{x}=E_{x}, \quad \bar{E}_{y}=\gamma\left(E_{y}-v B_{z}\right), \quad \bar{E}_{z}=\gamma\left(E_{z}+v B_{y}\right) \\&\bar{B}_{x}=B_{x}, \quad \bar{B}_{y}=\gamma\left(B_{y}+\frac{v}{c^{2}} E_{z}\right), \quad \bar{B}_{z}=\gamma\left(B_{z}-\frac{v}{c^{2}} E_{y}\right)\end{aligned} (12.109)