Question 12.68: “Derive” the Lorentz force law, as follows: Let charge q be ...

“Derive” the Lorentz force law, as follows: Let charge q be at rest in \overline{ S }, \text { so } \overline{ F }=q \overline{ E }, \text { and let } \overline{ S } move with velocity v =v \hat{ x } with respect to S. Use the transformation rules (Eqs. 12.67 and 12.109) to rewrite \overline{ F } in terms of F, and \overline{ E } in terms of E and B. From these, deduce the formula for F in terms of E and B.

\overline{ F }_{\perp}=\frac{1}{\gamma} F _{\perp}, \quad \bar{F}_{\|}=F_{\|}                                (12.67)

\begin{aligned}&\bar{E}_{x}=E_{x}, \quad \bar{E}_{y}=\gamma\left(E_{y}-v B_{z}\right), \quad \bar{E}_{z}=\gamma\left(E_{z}+v B_{y}\right) \\&\bar{B}_{x}=B_{x}, \quad \bar{B}_{y}=\gamma\left(B_{y}+\frac{v}{c^{2}} E_{z}\right), \quad \bar{B}_{z}=\gamma\left(B_{z}-\frac{v}{c^{2}} E_{y}\right)\end{aligned}                             (12.109)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation 12.67 assumes the particle is (instantaneously) at rest in S. Here the particle is at rest in \overline{ S }.

So  F _{\perp}=\frac{1}{\gamma} \overline{ F }_{\perp}, F_{\|}=\bar{F}_{\|} \cdot \operatorname{Using} \overline{ F }=q \overline{ E } , then,

F_{x}=\bar{F}_{x}=q \bar{E}_{x}, \quad F_{y}=\frac{1}{\gamma} \bar{F}_{y}=\frac{1}{\gamma} q \bar{E}_{y}, \quad F_{z}=\frac{1}{\gamma} \bar{F}_{z}=\frac{1}{\gamma} q \bar{E}_{z}.

Invoking Eq. 12.109:

F_{x}=q E_{x}, \quad F_{y}=\frac{1}{\gamma} q \gamma\left(E_{y}-v B_{z}\right)=q\left(E_{y}-v B_{z}\right) \quad F_{z}=\frac{1}{\gamma} q \gamma\left(E_{z}+v B_{y}\right)=q\left(E_{z}+v B_{y}\right).

\text { But } \quad v \times B =-v B_{z} \hat{ x }+v B_{y} \hat{ z }, \quad \text { so } F =q( E + v \times B ) . \quad \text { qed }

Related Answered Questions