Describe Span \left\{\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] ,\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] ,\left [ \begin{matrix} 3 \\ 0 \\ -2 \end{matrix} \right ] \right\} geometrically.
Describe Span \left\{\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] ,\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] ,\left [ \begin{matrix} 3 \\ 0 \\ -2 \end{matrix} \right ] \right\} geometrically.
By definition, a vector equation for the spanned set is
\vec{x}=c_{1}\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +c_{2}\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] +c_{3}\left [ \begin{matrix} 3 \\ 0 \\ -2 \end{matrix} \right ], \ \ \ \ c_{1},c_{2},c_{3}\in \mathbb{R}We observe that \left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] =\left [ \begin{matrix} 3 \\ 0 \\ -2 \end{matrix} \right ] . Hence, we can rewrite the vector equation as
\vec{x}=c_{1}\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +c_{2}\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] +c_{3}\left\lgroup\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] \right\rgroup , \ \ \ c_{1},c_{2},c_{3}\in \mathbb{R}=(c_{1}+c_{3})\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +(c_{2}+c_{3})\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] , \ \ \ c_{1},c_{2},c_{3}\in \mathbb{R}
Since \left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] and \left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] are not scalar multiples of each other, we cannot simplify the vector equation any more. Thus, the set is a plane with vector equation
\vec{x}=s\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +t\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] , \ \ \ s,t\in \mathbb{R}