Question 1.2.5: Describe Span {[3 1 -3], [0 -1 1], [3 0 -2]} geometrically.

Describe Span \left\{\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] ,\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] ,\left [ \begin{matrix} 3 \\ 0 \\ -2 \end{matrix} \right ] \right\} geometrically.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

By definition, a vector equation for the spanned set is

\vec{x}=c_{1}\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +c_{2}\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] +c_{3}\left [ \begin{matrix} 3 \\ 0 \\ -2 \end{matrix} \right ], \ \ \ \ c_{1},c_{2},c_{3}\in \mathbb{R}

We observe that \left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] =\left [ \begin{matrix} 3 \\ 0 \\ -2 \end{matrix} \right ] . Hence, we can rewrite the vector equation as

\vec{x}=c_{1}\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +c_{2}\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] +c_{3}\left\lgroup\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] \right\rgroup , \ \ \ c_{1},c_{2},c_{3}\in \mathbb{R}

 

=(c_{1}+c_{3})\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +(c_{2}+c_{3})\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] , \ \ \ c_{1},c_{2},c_{3}\in \mathbb{R}

Since \left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] and \left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] are not scalar multiples of each other, we cannot simplify the vector equation any more. Thus, the set is a plane with vector equation

\vec{x}=s\left [ \begin{matrix} 3 \\ 1 \\ -3 \end{matrix} \right ] +t\left [ \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \right ] , \ \ \ s,t\in \mathbb{R}

Related Answered Questions