Make the a priori decisions:
• Function: 100 hp, 1120 rev/min, R = 0.95, N = 10^{9} cycles, K_{o} = 1
• Design factor for unquantifiable exingencies: n_{d} = 2
• Tooth system: \phi_{n} = 20°
• Tooth count: N_{P} = 18 teeth, N_{G} = 72 teeth (no interference)
• Quality number: Q_{v} = 6, use grade 1 material
• Assume m_{B} ≥ 1.2 in Eq. (14–40), K_{B} = 1
K_{B} =\begin{cases} 1.6 ln\frac{2.242}{m_{B}}&m_{B} < 1.2\\1&m_{B} ≥ 1.2\end{cases} (14-40)
Pitch: Select a trial diametral pitch of P_{d} = 4 teeth/in. Thus, d_{P} = 18/4 = 4.5 in and d_{G} = 72/4 = 18 in. From Table 14–2, Y_{P} = 0.309, Y_{G} = 0.4324 (interpolated). From Fig. 14–6, J_{P} = 0.32, J_{G} = 0.415.
V =\frac{πd_{P}n_{P}}{12} =\frac{π(4.5)1120}{12} = 1319 ft/min
W^{t} =\frac{33 000H}{V} =\frac{33 000(100)}{1319} = 2502 lbf
Table 14–2
Values of the Lewis Form Factor Y (These Values Are for a Normal Pressure Angle of 20°, Full-Depth Teeth, and a Diametral Pitch of Unity in the Plane of Rotation)
Y |
Number of Teeth |
Y |
Number of Teeth |
0.353 |
28 |
0.245 |
12 |
0.359 |
30 |
0.261 |
13 |
0.371 |
34 |
0.277 |
14 |
0.384 |
38 |
0.290 |
15 |
0.397 |
43 |
0.296 |
16 |
0.409 |
50 |
0.303 |
17 |
0.422 |
60 |
0.309 |
18 |
0.435 |
75 |
0.314 |
19 |
0.447 |
100 |
0.322 |
20 |
0.460 |
150 |
0.328 |
21 |
0.472 |
300 |
0.331 |
22 |
0.480 |
400 |
0.337 |
24 |
0.485 |
Rack |
0.346 |
26 |
From Eqs. (14–28) and (14–27),
K_{v} =\begin{cases} \left(\frac{A + \sqrt{V}}{A}\right)^{B} & V in ft/min\\ \left(\frac{A + \sqrt{200V}}{A}\right)^{B}&V in m/s\end{cases} (14-27)
A = 50 + 56(1 − B)
B = 0.25(12 − Q_{v})^{2/3} (14–28)
B = 0.25(12 − Q_{v})^{2/3} = 0.25(12 − 6)^{2/3} = 0.8255
A = 50 + 56(1 − 0.8255) = 59.77
K_{v} =\left(\frac{59.77 + \sqrt{1319}}{59.77}\right)^{0.8255}= 1.480
From Eq. (14–38), K_{R} = 0.658 − 0.0759 ln(1 − 0.95) = 0.885. From Fig. 14–14,
K_{R}=\begin{cases} 0.658 − 0.0759 ln(1 − R) & 0.5 < R < 0.99\\ 0.50 − 0.109 ln(1 − R)&0.99 ≤ R ≤ 0.9999\end{cases} (14-38)
(Y_{N} )_{P} = 1.3558(10^{9})^{−0.0178} = 0.938
(Y_{N} )_{G} = 1.3558(10^{9}/4)^{−0.0178} = 0.961
From Fig. 14–15,
σ =\begin{cases} W^{t} K_{o}K_{v}K_{s} \frac{P_{d}}{F}\frac{K_{m}K_{B}}{J} & (\text{U.S. customary units})\\ W^{t} K_{o}K_{v}K_{s} \frac{1}{bm_{t}}\frac{K_{H} K_{B}}{Y_{J}} & (SI units) \end{cases} (14-15)
(Z_{N} )_{P} = 1.4488(10^{9})^{−0.023} = 0.900
(Z_{N} )_{G} = 1.4488(10^{9}/4)^{−0.023} = 0.929
From the recommendation after Eq. (14–8), 3p ≤ F ≤ 5p. Try F = 4p = 4π/P = 4π/4 = 3.14 in. From Eq. (a), Sec. 14–10,
σ =\frac{K_{v}W^{t}}{F_{m}Y} (14–8)
K_{s} =\frac{1}{k_{b}} = 1.192 \left(\frac{F\sqrt{Y}}{P}\right)^{0.0535} (a)
K_{s} = 1.192 \left(\frac{F\sqrt{Y}}{P}\right)^{0.0535} = 1.192 \left(\frac{3.14\sqrt{0.309}}{4}\right)^{0.0535}= 1.140
From Eqs. (14–31), (14–33), (14–35), C_{mc} = C_{pm} = C_{e} = 1. From Fig.14–11, C_{ma} = 0.175 for commercial enclosed gear units. From Eq.(14–32), F/(10d_{P}) = 3.14/[10(4.5)] = 0.0698. Thus,
C_{mc} =\begin{cases} 1&for uncrowned teeth\\ 0.8&for crowned teeth\end {cases} (14-31)
C_{p f} =\begin{cases} \frac{F}{10d} − 0.025 & F ≤ 1 in \\ \frac{F}{10d} − 0.0375 + 0.0125F & 1 < F ≤ 17 in\\ \frac{F}{10d} − 0.1109 + 0.0207F − 0.000 228F^{2}&17 < F ≤ 40 in \end{cases} (14-32)
C_{p m} =\begin{cases} 1& for straddle-mounted pinion with S_{1}/S < 0.175 \\ 1.1 & for straddle-mounted pinion with S_{1}/S ≥ 0.175 \end{cases} (14.33)
C_{e} =\begin{cases} 0.8&for gearing adjusted at assembly, or compatibility is improved by lapping, or both\\ 1&for all other conditions\end {cases} (14-35)
C_{p f} = 0.0698 − 0.0375 + 0.0125(3.14) = 0.0715
From Eq. (14–30),
K_{m} = C_{mf} = 1 + C_{mc}(C_{p f} C_{pm} + C_{ma}C_{e}) (14–30)
K_{m}= 1 + (1)[0.0715(1) + 0.175(1)] = 1.247
From Table 14–8, for steel gears, C_{p} = 2300\sqrt{psi}. From Eq. (14–23), with m_{G} = 4 and m_{N} = 1,
I =\begin{cases} \frac{cos \phi_{t} sin \phi_{t}}{2m_{N}}{m_{G}}{m_{G} + 1} & external gears \\ \frac{cos \phi_{t} sin \phi_{t}}{2m_{N}}{m_{G}}{m_{G} – 1}& internal gears \end{cases} (14.23)
I =\frac{cos 20° sin 20°}{2} \frac{4}{4 + 1} = 0.1286
Table 14–8
Elastic Coefficient C_{p} (Z_{E}),psi (\sqrt{MPa}) Source: AGMA 218.01
Gear Material and Modulus of Elasticity E_{G}, lbf/in^{2} (MPa)* |
Pinion Modulus of Elasticity E_{p} psi (MPa)* |
Pinion Material |
Tin Bronze
16 × 10^{6}
(1.1 ×10^{5}) |
Aluminum Bronze
17.5 × 10^{6}
(1.2 × 10^{5}) |
Cast Iron
22 × 10^{6}
(1.5× 10^{5}) |
Nodular Iron
24 × 10^{6}
(1.7 × 10^{5}) |
Malleable Iron
25 × 10^{6}
(1.7 × 10^{5}) |
Steel
30 × 10^{6}
(2 ×10^{5}) |
1900 |
1950 |
2100 |
2160 |
2180 |
2300 |
30 × 10^{6} |
Steel |
(158) |
(162) |
(174) |
(179) |
(181) |
(191) |
(2 × 10^{5}) |
|
1850 |
1900 |
2020 |
2070 |
2090 |
2180 |
25 × 10^{6} |
Malleable iron |
(154) |
(158) |
(168) |
(172) |
(174) |
(181) |
(1.7 × 10^{5}) |
|
1830 |
1880 |
2000 |
2050 |
2070 |
2160 |
24 × 10^{6} |
Nodular iron |
(152) |
(156) |
(166) |
(170) |
(172) |
(179) |
(1.7 × 10^{5}) |
|
1800 |
1850 |
1960 |
2000 |
2020 |
2100 |
22 × 10^{6} |
Cast iron |
(149) |
(154) |
(163) |
(166) |
(168) |
(174) |
(1.5 × 10^{5}) |
|
1700 |
1750 |
1850 |
1880 |
1900 |
1950 |
17.5 ×10^{6} |
Aluminum bronze bronze |
(141) |
(145) |
(154) |
(156) |
(158) |
(162) |
(1.2 × 10^{5}) |
|
1650 |
1700 |
1800 |
1830 |
1850 |
1900 |
10^{6} |
Tin bronze |
(137) |
(141) |
(149) |
(152) |
(154) |
(158) |
(1.1 × 10^{5}) |
|
Poisson’s ratio=0.30.
∗When more exact values for modulus of elasticity are obtained from roller contact tests, they may be used.
Pinion tooth bending. With the above estimates of K_{s} and K_{m} from the trial diametral pitch, we check to see if the mesh width F is controlled by bending or wear considerations. Equating Eqs. (14–15) and (14–17), substituting n_{d}W^{t} for W^{t} , and solving for the face width (F)_{bend} necessary to resist bending fatigue, we obtain
σ =\begin{cases} W^{t} K_{o}K_{v}K_{s} \frac{P_{d}}{F}\frac{K_{m}K_{B}}{J} & (U.S. customary units)\\ W^{t} K_{o}K_{v}K_{s} \frac{1}{bm_{t}}\frac{K_{H} K_{B}}{Y_{J}} & (SI units) \end{cases} (14-15)
σ_{all} =\begin{cases} \frac{S_{t}}{S_{F}} \frac{Y_{N}}{K_{T} K_{R}} & (U.S. customary units)\\\frac{S_{t}}{S_{F}} \frac{Y_{N}}{Y_{θ}Y_{Z}}&(SI units)\end{cases} (14–17)
(F)_{bend} = n_{d}W^{t} K_{o}K_{v}K_{s} P_{d} \frac{K_{m}K_{B}}{J_{P}} \frac{K_{T} K_{R}}{S_{t}Y_{N}} (1)
Equating Eqs. (14–16) and (14–18), substituting n_{d}W^{t} for W^{t} , and solving for the face width (F)_{wear} necessary to resist wear fatigue, we obtain
σ_{c} =\begin{cases} C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{m}}{d_{P F}} \frac{C_{f}}{I}} & (U.S. customary units) \\ C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{H}}{d_{w1}b} \frac{Z_{R}}{Z_{I}}}& (SI units) \end{cases} (14-16)
σ_{c,all} =\begin{cases} \frac{S_{c}}{S_{H}} \frac{Z_{N}C_{H}}{K_{T} K_{R}} & (U.S. customary units)\\ \frac{S_{c}}{S_{H}}\frac{Z_{N} Z_{W}}{Y_{θ}Y_{Z}}&(SI units)\end{cases} (14–18)
(F)_{wear} =\left(\frac{C_{p} Z_{N}}{S_{c}K_{T} K_{R}}\right)^{2} n_{d}W^{t} K_{o}K_{v}K_{s} \frac{K_{m}C_{f}}{d_{P} I} (2)
From Table 14–5 the hardness range of Nitralloy 135M is Rockwell C32–36 (302–335 Brinell). Choosing a midrange hardness as attainable, using 320 Brinell. From Fig. 14–4,
S_{t} = 86.2(320) + 12 730 = 40 310 psi
Table 14–5
Nominal Temperature Used in Nitriding and Hardnesses Obtained Source: Darle W. Dudley, Handbook of Practical Gear Design, rev. ed.,
McGraw-Hill, New York, 1984.
Hardness, Rockwell C Scale |
Nitriding, °F |
Temperature before nitriding, °F |
Steel |
Core |
Case |
30–35 |
62–65 |
975 |
1150 |
Nitralloy 135* |
32–36 |
62–65 |
975 |
1150 |
Nitralloy 135M |
40–44 |
62–65 |
975 |
1000 |
Nitralloy N |
27–35 |
48–53 |
975 |
1100 |
AISI 4340 |
27–35 |
49–54 |
975 |
1100 |
AISI 4140 |
27–33 |
58–62 |
975 |
1100 |
31 Cr Mo V 9 |
∗Nitralloy is a trademark of the Nitralloy Corp., New York.
Inserting the numerical value of S_{t} in Eq. (1) to estimate the face width gives
(F)_{bend} = 2(2502)(1)1.48(1.14)4 \frac{1.247(1)(1)0.885}{0.32(40 310)0.938} = 3.08 in
From Table 14–6 for Nitralloy 135M, S_{c} = 170 000 psi. Inserting this in Eq. (2), we find
(F)_{wear} = \left( \frac{2300(0.900)}{170 000(1)0.885}\right)^{2} 2(2502)1(1.48)1.14 \frac{1.247(1)}{4.5(0.1286) }= 3.44 in
Table 14–6
Repeatedly Applied Contact Strength S_{c} at 10^{7} Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.
Allowable Contact Stress Number,^{2} S_{c}, psi |
Minimum Surface Hardness^{1} |
Heat Treatment |
Material Designation |
Grade 3 |
Grade 2 |
Grade 1 |
__ |
See Fig. 14–5 |
See Fig. 14–5 |
See Fig. 14–5 |
Through hardened^{4} |
Steel^{3} |
__ |
190 000 |
170 000 |
50 HRC |
Flame^{5} or induction |
|
__ |
195 000 |
175 000 |
54 HRC |
hardened^{5} |
|
275 000 |
225 000 |
180 000 |
See Table 9∗ |
Carburized and hardened^{5} |
|
175 000 |
163 000 |
150 000 |
83.5 HR15N |
Nitrided^{5} (through |
|
180 000 |
168 000 |
155 000 |
84.5 HR15N |
hardened steels) |
|
189 000 |
172 000 |
155 000 |
87.5 HR15N |
Nitrided^{5} |
2.5% chrome (no aluminum) |
195 000 |
183 000 |
170 000 |
90.0 HR15N |
Nitrided^{5} |
Nitralloy 135M |
205 000 |
188 000 |
172 000 |
90.0 HR15N |
Nitrided^{5} |
Nitralloy N |
216 000 |
196 000 |
176 000 |
90.0 HR15N |
Nitrided^{5} |
2.5% chrome (no aluminum) |
Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–5.
1 Hardness to be equivalent to that at the start of active profile in the center of the face width.
2 See Tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3 The steel selected must be compatible with the heat treatment process selected and hardness required.
4 These materials must be annealed or normalized as a minimum.
5 The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
* Table 9 of ANSI/AGMA 2001-D04 is a comprehensive tabulation of the major metallurgical factors affecting S_{t} and S_{c} of carburized and hardened steel gears.
Make face width 3.50 in. Correct K_{s} and K_{m}:
K_{s} = 1.192 \left( \frac{3.50\sqrt{0.309}}{4}\right)^{0.0535}= 1.147
\frac{F}{10d_{P}} =\frac{3.50}{10(4.5)} = 0.0778
C_{p f} = 0.0778 − 0.0375 + 0.0125(3.50) = 0.0841
K_{m} = 1 + (1)[0.0841(1) + 0.175(1)] = 1.259
The bending stress induced by W^{t} in bending, from Eq. (14–15), is
σ =\begin{cases} W^{t} K_{o}K_{v}K_{s} \frac{P_{d}}{F}\frac{K_{m}K_{B}}{J} & (U.S. customary units)\\ W^{t} K_{o}K_{v}K_{s} \frac{1}{bm_{t}}\frac{K_{H} K_{B}}{Y_{J}} & (SI units) \end{cases} (14-15)
(σ )_{P} = 2502(1)1.48(1.147) \frac{4}{3.50} \frac{1.259(1)}{0.32} = 19 100 psi
The AGMA factor of safety in bending of the pinion, from Eq. (14–41), is
S_{F} =\frac{S_{t}Y_{N} /(K_{T} K_{R})}{σ} =\frac{fully corrected bending strength}{bending stress} (14–41)
(S_{F} )_{P} =\frac{40 310(0.938)/[1(0.885)]}{19 100} = 2.24
Gear tooth bending. Use cast gear blank because of the 18-in pitch diameter. Use the same material, heat treatment, and nitriding. The load-induced bending stress is in the ratio of J_{P}/J_{G}. Then
(σ )_{G} = 19 100 \frac{0.32}{0.415} = 14 730 psi
The factor of safety of the gear in bending is
(S_{F} )_{G} =\frac{40 310(0.961)/[1(0.885)]}{14 730} = 2.97
Pinion tooth wear. The contact stress, given by Eq. (14–16), is
σ_{c} =\begin{cases} C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{m}}{d_{P F}} \frac{C_{f}}{I}} & (U.S. customary units) \\ C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{H}}{d_{w1}b} \frac{Z_{R}}{Z_{I}}}& (SI units) \end{cases} (14-16)
(σ_{c})_{P} = 2300 \left[ 2502(1)1.48(1.147)\frac{1.259}{4.5(3.5)} \frac{1}{0.129}\right]^{1/2}= 118 000 psi
The factor of safety from Eq. (14–42), is
S_{H} =\frac{S_{c}Z_{N}C_{H}/(K_{T} K_{R})}{σ_{c}} =\frac{fully corrected contact strength}{contact stress} (14–42)
(S_{H})_{P} =\frac{170 000(0.900)/[1(0.885)]}{118 000} = 1.465
By our definition of factor of safety, pinion bending is (S_{F} )_{P} = 2.24, and wear is (S_{H})^{2}_{P} = (1.465)^{2} = 2.15.
Gear tooth wear. The hardness of the gear and pinion are the same. Thus, from Fig. 14–12, C_{H} = 1, the contact stress on the gear is the same as the pinion, (σ_{c})_{G} = 118 000 psi. The wear strength is also the same, S_{c} = 170 000 psi. The factor of safety of the gear in wear is
(S_{H})_{G} =\frac{170 000(0.929)/[1(0.885)]}{118 000} = 1.51
So, for the gear in bending, (S_{F} )_{G} = 2.97, and wear (S_{H})^{2}_{G} = (1.51)^{2} = 2.29.
Rim. Keep m_{B} ≥ 1.2. The whole depth is h_{t} = addendum + dedendum = 1/P_{d }+ 1.25/P_{d} = 2.25/P_{d} = 2.25/4 = 0.5625 in. The rim thickness t_{R} is
t_{R} ≥ m_{B}h_{t} = 1.2(0.5625) = 0.675 in
In the design of the gear blank, be sure the rim thickness exceeds 0.675 in; if it does not, review and modify this mesh design.