Question 14.8: Design a 4:1 spur-gear reduction for a 100-hp, three-phase s...

Design a 4:1 spur-gear reduction for a 100-hp, three-phase squirrel-cage induction motor running at 1120 rev/min. The load is smooth, providing a reliability of 0.95 at 10^{9} revolutions of the pinion. Gearing space is meager. Use Nitralloy 135M, grade 1 material to keep the gear size small. The gears are heat-treated first then nitrided.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Make the a priori decisions:
• Function: 100 hp, 1120 rev/min, R = 0.95, N = 10^{9} cycles, K_{o} = 1
• Design factor for unquantifiable exingencies: n_{d} = 2
• Tooth system: \phi_{n} = 20°
• Tooth count: N_{P} = 18 teeth, N_{G} = 72 teeth (no interference)
• Quality number: Q_{v} = 6, use grade 1 material
• Assume m_{B} ≥ 1.2 in Eq. (14–40), K_{B} = 1

K_{B} =\begin{cases} 1.6  ln\frac{2.242}{m_{B}}&m_{B} < 1.2\\1&m_{B} ≥ 1.2\end{cases}                 (14-40)

Pitch: Select a trial diametral pitch of P_{d} = 4 teeth/in. Thus, d_{P} = 18/4 = 4.5 in and d_{G} = 72/4 = 18 in. From Table 14–2, Y_{P} = 0.309, Y_{G} = 0.4324 (interpolated). From Fig. 14–6, J_{P} = 0.32, J_{G} = 0.415.

V =\frac{πd_{P}n_{P}}{12} =\frac{π(4.5)1120}{12} = 1319   ft/min

W^{t} =\frac{33  000H}{V} =\frac{33  000(100)}{1319} = 2502   lbf

Table 14–2
Values of the Lewis Form Factor Y (These Values Are for a Normal Pressure Angle of 20°, Full-Depth Teeth, and a Diametral Pitch of Unity in the Plane of Rotation)

Y Number of Teeth Y Number of Teeth
0.353 28 0.245 12
0.359 30 0.261 13
0.371 34 0.277 14
0.384 38 0.290 15
0.397 43 0.296 16
0.409 50 0.303 17
0.422 60 0.309 18
0.435 75 0.314 19
0.447 100 0.322 20
0.460 150 0.328 21
0.472 300 0.331 22
0.480 400 0.337 24
0.485 Rack 0.346 26

From Eqs. (14–28) and (14–27),

K_{v} =\begin{cases} \left(\frac{A + \sqrt{V}}{A}\right)^{B} & V  in  ft/min\\ \left(\frac{A + \sqrt{200V}}{A}\right)^{B}&V  in  m/s\end{cases}                        (14-27)

A = 50 + 56(1 − B)
B = 0.25(12 − Q_{v})^{2/3}                            (14–28)

B = 0.25(12 − Q_{v})^{2/3} = 0.25(12 − 6)^{2/3} = 0.8255
A = 50 + 56(1 − 0.8255) = 59.77
K_{v} =\left(\frac{59.77 + \sqrt{1319}}{59.77}\right)^{0.8255}= 1.480

From Eq. (14–38), K_{R} = 0.658 − 0.0759  ln(1 − 0.95) = 0.885. From Fig. 14–14,

K_{R}=\begin{cases} 0.658 − 0.0759 ln(1 − R) & 0.5 < R < 0.99\\ 0.50 − 0.109 ln(1 − R)&0.99 ≤ R ≤ 0.9999\end{cases}          (14-38)

(Y_{N} )_{P} = 1.3558(10^{9})^{−0.0178} = 0.938
(Y_{N} )_{G} = 1.3558(10^{9}/4)^{−0.0178} = 0.961

From Fig. 14–15,

σ =\begin{cases} W^{t} K_{o}K_{v}K_{s} \frac{P_{d}}{F}\frac{K_{m}K_{B}}{J} & (\text{U.S. customary units})\\ W^{t} K_{o}K_{v}K_{s} \frac{1}{bm_{t}}\frac{K_{H} K_{B}}{Y_{J}} & (SI units) \end{cases}                      (14-15)

(Z_{N} )_{P} = 1.4488(10^{9})^{−0.023} = 0.900
(Z_{N} )_{G} = 1.4488(10^{9}/4)^{−0.023} = 0.929

From the recommendation after Eq. (14–8), 3p ≤ F ≤ 5p. Try F = 4p = 4π/P = 4π/4 = 3.14 in. From Eq. (a), Sec. 14–10,

σ =\frac{K_{v}W^{t}}{F_{m}Y}             (14–8)

K_{s} =\frac{1}{k_{b}} = 1.192 \left(\frac{F\sqrt{Y}}{P}\right)^{0.0535}                         (a)

K_{s} = 1.192 \left(\frac{F\sqrt{Y}}{P}\right)^{0.0535} = 1.192 \left(\frac{3.14\sqrt{0.309}}{4}\right)^{0.0535}= 1.140

From Eqs. (14–31), (14–33), (14–35), C_{mc} = C_{pm} = C_{e} = 1. From Fig.14–11, C_{ma} = 0.175 for commercial enclosed gear units. From Eq.(14–32), F/(10d_{P}) = 3.14/[10(4.5)] = 0.0698. Thus,

C_{mc} =\begin{cases} 1&for   uncrowned  teeth\\ 0.8&for  crowned  teeth\end {cases}                         (14-31)

C_{p f} =\begin{cases} \frac{F}{10d} − 0.025 & F ≤ 1  in \\ \frac{F}{10d} − 0.0375 + 0.0125F & 1 < F ≤ 17  in\\ \frac{F}{10d} − 0.1109 + 0.0207F − 0.000 228F^{2}&17 < F ≤ 40  in \end{cases}                     (14-32)

C_{p m} =\begin{cases} 1&  for  straddle-mounted  pinion  with  S_{1}/S < 0.175 \\ 1.1 & for  straddle-mounted  pinion  with  S_{1}/S ≥ 0.175 \end{cases}                                  (14.33)

C_{e} =\begin{cases} 0.8&for  gearing  adjusted  at  assembly,  or  compatibility is  improved  by  lapping, or  both\\ 1&for  all  other  conditions\end {cases}                         (14-35)

C_{p f} = 0.0698 − 0.0375 + 0.0125(3.14) = 0.0715

From Eq. (14–30),

K_{m} = C_{mf} = 1 + C_{mc}(C_{p f} C_{pm} + C_{ma}C_{e})                 (14–30)

K_{m}= 1 + (1)[0.0715(1) + 0.175(1)] = 1.247

From Table 14–8, for steel gears, C_{p} = 2300\sqrt{psi}. From Eq. (14–23), with m_{G} = 4  and  m_{N} = 1,

I =\begin{cases} \frac{cos  \phi_{t}  sin  \phi_{t}}{2m_{N}}{m_{G}}{m_{G} + 1} & external  gears \\ \frac{cos  \phi_{t}  sin  \phi_{t}}{2m_{N}}{m_{G}}{m_{G} – 1}& internal  gears \end{cases}                   (14.23)

I =\frac{cos 20° sin 20°}{2} \frac{4}{4 + 1} = 0.1286

 

Table 14–8
Elastic Coefficient C_{p} (Z_{E}),psi (\sqrt{MPa}) Source: AGMA 218.01

Gear Material and Modulus of Elasticity E_{G}, lbf/in^{2} (MPa)* Pinion Modulus of Elasticity E_{p} psi (MPa)* Pinion Material
Tin Bronze

16 × 10^{6}

(1.1 ×10^{5})

Aluminum Bronze

17.5 × 10^{6}

(1.2 × 10^{5})

Cast Iron

22 × 10^{6}

(1.5× 10^{5})

Nodular Iron

24 × 10^{6}

(1.7 × 10^{5})

Malleable Iron

25 × 10^{6}

(1.7 × 10^{5})

Steel

30 × 10^{6}

(2 ×10^{5})

1900 1950 2100 2160 2180 2300 30 × 10^{6} Steel
(158) (162) (174) (179) (181) (191) (2 × 10^{5})
1850 1900 2020 2070 2090 2180 25 × 10^{6} Malleable iron
(154) (158) (168) (172) (174) (181) (1.7 × 10^{5})
1830 1880 2000 2050 2070 2160 24 × 10^{6} Nodular iron
(152) (156) (166) (170) (172) (179) (1.7 × 10^{5})
1800 1850 1960 2000 2020 2100 22 × 10^{6} Cast iron
(149) (154) (163) (166) (168) (174) (1.5 × 10^{5})
1700 1750 1850 1880 1900 1950 17.5 ×10^{6} Aluminum bronze bronze
(141) (145) (154) (156) (158) (162) (1.2 × 10^{5})
1650 1700 1800 1830 1850 1900 10^{6} Tin bronze
(137) (141) (149) (152) (154) (158) (1.1 × 10^{5})

Poisson’s ratio=0.30.
∗When more exact values for modulus of elasticity are obtained from roller contact tests, they may be used.

 

Pinion tooth bending. With the above estimates of K_{s}  and  K_{m} from the trial diametral pitch, we check to see if the mesh width F is controlled by bending or wear considerations. Equating Eqs. (14–15) and (14–17), substituting n_{d}W^{t}  for  W^{t} , and solving for the face width (F)_{bend} necessary to resist bending fatigue, we obtain

σ =\begin{cases} W^{t} K_{o}K_{v}K_{s} \frac{P_{d}}{F}\frac{K_{m}K_{B}}{J} & (U.S. customary  units)\\ W^{t} K_{o}K_{v}K_{s} \frac{1}{bm_{t}}\frac{K_{H} K_{B}}{Y_{J}} & (SI  units) \end{cases}                      (14-15)

σ_{all} =\begin{cases} \frac{S_{t}}{S_{F}} \frac{Y_{N}}{K_{T} K_{R}} & (U.S.  customary  units)\\\frac{S_{t}}{S_{F}} \frac{Y_{N}}{Y_{θ}Y_{Z}}&(SI   units)\end{cases}             (14–17)

(F)_{bend} = n_{d}W^{t} K_{o}K_{v}K_{s} P_{d} \frac{K_{m}K_{B}}{J_{P}} \frac{K_{T} K_{R}}{S_{t}Y_{N}}               (1)

Equating Eqs. (14–16) and (14–18), substituting n_{d}W^{t} for W^{t} , and  solving for the face width (F)_{wear} necessary to resist wear fatigue, we obtain

σ_{c} =\begin{cases} C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{m}}{d_{P F}} \frac{C_{f}}{I}} & (U.S. customary  units) \\ C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{H}}{d_{w1}b} \frac{Z_{R}}{Z_{I}}}& (SI  units) \end{cases}                              (14-16)

σ_{c,all} =\begin{cases} \frac{S_{c}}{S_{H}} \frac{Z_{N}C_{H}}{K_{T} K_{R}} & (U.S.  customary  units)\\ \frac{S_{c}}{S_{H}}\frac{Z_{N} Z_{W}}{Y_{θ}Y_{Z}}&(SI  units)\end{cases}             (14–18)

(F)_{wear} =\left(\frac{C_{p} Z_{N}}{S_{c}K_{T} K_{R}}\right)^{2} n_{d}W^{t} K_{o}K_{v}K_{s} \frac{K_{m}C_{f}}{d_{P} I}                       (2)

From Table 14–5 the hardness range of Nitralloy 135M is Rockwell C32–36 (302–335 Brinell). Choosing a midrange hardness as attainable, using 320 Brinell. From Fig. 14–4,

S_{t} = 86.2(320) + 12 730 = 40 310  psi

Table 14–5
Nominal Temperature Used in Nitriding and Hardnesses Obtained Source: Darle W. Dudley, Handbook of Practical Gear Design, rev. ed.,
McGraw-Hill, New York, 1984.

Hardness, Rockwell C Scale Nitriding, °F Temperature before nitriding, °F Steel
Core Case
30–35 62–65 975 1150 Nitralloy 135*
32–36 62–65 975 1150 Nitralloy 135M
40–44 62–65 975 1000 Nitralloy N
27–35 48–53 975 1100 AISI 4340
27–35 49–54 975 1100 AISI 4140
27–33 58–62 975 1100 31 Cr Mo V 9

∗Nitralloy is a trademark of the Nitralloy Corp., New York.

Inserting the numerical value of S_{t} in Eq. (1) to estimate the face width gives

(F)_{bend} = 2(2502)(1)1.48(1.14)4 \frac{1.247(1)(1)0.885}{0.32(40 310)0.938} = 3.08  in

From Table 14–6 for Nitralloy 135M, S_{c} = 170 000 psi. Inserting this in Eq. (2), we find

(F)_{wear} = \left( \frac{2300(0.900)}{170 000(1)0.885}\right)^{2} 2(2502)1(1.48)1.14 \frac{1.247(1)}{4.5(0.1286) }= 3.44  in

Table 14–6
Repeatedly Applied Contact Strength S_{c} at 10^{7} Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.

Allowable Contact Stress Number,^{2} S_{c}, psi Minimum Surface Hardness^{1} Heat Treatment Material Designation
Grade 3 Grade 2 Grade 1
__ See Fig. 14–5 See Fig. 14–5 See Fig. 14–5 Through hardened^{4} Steel^{3}
__ 190 000 170 000 50 HRC Flame^{5} or induction
__ 195 000 175 000 54 HRC hardened^{5}
275 000 225 000 180 000 See Table 9∗ Carburized and hardened^{5}
175 000 163 000 150 000 83.5 HR15N Nitrided^{5} (through
180 000 168 000 155 000 84.5 HR15N hardened steels)
189 000 172 000 155 000 87.5 HR15N Nitrided^{5} 2.5% chrome (no aluminum)
195 000 183 000 170 000 90.0 HR15N Nitrided^{5} Nitralloy 135M
205 000 188 000 172 000 90.0 HR15N Nitrided^{5} Nitralloy N
216 000 196 000 176 000 90.0 HR15N Nitrided^{5} 2.5% chrome (no aluminum)

Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–5.
1 Hardness to be equivalent to that at the start of active profile in the center of the face width.
2 See Tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3 The steel selected must be compatible with the heat treatment process selected and hardness required.
4 These materials must be annealed or normalized as a minimum.
5 The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
* Table 9 of ANSI/AGMA 2001-D04 is a comprehensive tabulation of the major metallurgical factors affecting S_{t} and S_{c} of carburized and hardened steel gears.


Make face width 3.50 in. Correct K_{s}  and  K_{m}:

K_{s} = 1.192 \left( \frac{3.50\sqrt{0.309}}{4}\right)^{0.0535}= 1.147

\frac{F}{10d_{P}} =\frac{3.50}{10(4.5)} = 0.0778
C_{p f} = 0.0778 − 0.0375 + 0.0125(3.50) = 0.0841
K_{m} = 1 + (1)[0.0841(1) + 0.175(1)] = 1.259

The bending stress induced by W^{t} in bending, from Eq. (14–15), is

σ =\begin{cases} W^{t} K_{o}K_{v}K_{s} \frac{P_{d}}{F}\frac{K_{m}K_{B}}{J} & (U.S. customary  units)\\ W^{t} K_{o}K_{v}K_{s} \frac{1}{bm_{t}}\frac{K_{H} K_{B}}{Y_{J}} & (SI  units) \end{cases}                      (14-15)

(σ )_{P} = 2502(1)1.48(1.147) \frac{4}{3.50}  \frac{1.259(1)}{0.32} = 19 100  psi

The AGMA factor of safety in bending of the pinion, from Eq. (14–41), is

S_{F} =\frac{S_{t}Y_{N} /(K_{T} K_{R})}{σ} =\frac{fully  corrected  bending  strength}{bending  stress}                (14–41)

(S_{F} )_{P} =\frac{40 310(0.938)/[1(0.885)]}{19 100} = 2.24

Gear tooth bending. Use cast gear blank because of the 18-in pitch diameter. Use the same material, heat treatment, and nitriding. The load-induced bending stress is in the ratio of J_{P}/J_{G}. Then

(σ )_{G} = 19 100 \frac{0.32}{0.415} = 14 730  psi

The factor of safety of the gear in bending is

(S_{F} )_{G} =\frac{40 310(0.961)/[1(0.885)]}{14 730} = 2.97

Pinion tooth wear. The contact stress, given by Eq. (14–16), is

σ_{c} =\begin{cases} C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{m}}{d_{P F}} \frac{C_{f}}{I}} & (U.S. customary  units) \\ C_{p} \sqrt{ W^{t} K_{o}K_{v}K_{s} \frac{K_{H}}{d_{w1}b} \frac{Z_{R}}{Z_{I}}}& (SI  units) \end{cases}                              (14-16)

(σ_{c})_{P} = 2300 \left[ 2502(1)1.48(1.147)\frac{1.259}{4.5(3.5)} \frac{1}{0.129}\right]^{1/2}= 118 000  psi

The factor of safety from Eq. (14–42), is

S_{H} =\frac{S_{c}Z_{N}C_{H}/(K_{T} K_{R})}{σ_{c}} =\frac{fully  corrected  contact  strength}{contact  stress}                   (14–42)

(S_{H})_{P} =\frac{170 000(0.900)/[1(0.885)]}{118 000} = 1.465

By our definition of factor of safety, pinion bending is (S_{F} )_{P} = 2.24, and wear is (S_{H})^{2}_{P} = (1.465)^{2} = 2.15.

Gear tooth wear. The hardness of the gear and pinion are the same. Thus, from Fig. 14–12, C_{H} = 1, the contact stress on the gear is the same as the pinion, (σ_{c})_{G} = 118 000 psi. The wear strength is also the same, S_{c} = 170 000 psi. The factor of safety of the gear in wear is

(S_{H})_{G} =\frac{170 000(0.929)/[1(0.885)]}{118 000} = 1.51

So, for the gear in bending, (S_{F} )_{G} = 2.97, and wear (S_{H})^{2}_{G} = (1.51)^{2} = 2.29.

Rim. Keep m_{B} ≥ 1.2. The whole depth is h_{t} = addendum + dedendum = 1/P_{d }+ 1.25/P_{d} = 2.25/P_{d} = 2.25/4 = 0.5625 in. The rim thickness t_{R} is

t_{R} ≥ m_{B}h_{t} = 1.2(0.5625) = 0.675  in

In the design of the gear blank, be sure the rim thickness exceeds 0.675 in; if it does not, review and modify this mesh design.

 

14.5
14.6
14.1415
14.11
14.12
14.4

Related Answered Questions