Question 17.2: Design a flat-belt drive to connect horizontal shafts on 16-...

Design a flat-belt drive to connect horizontal shafts on 16-ft centers. The velocity ratio is to be 2.25:1. The angular speed of the small driving pulley is 860 rev/min, and the nominal power transmission is to be 60 hp under very light shock.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• Function: H_{nom} = 60 hp, 860 rev/min, 2.25:1 ratio, K_{s} = 1.15, C = 16 ft
• Design factor: n_{d} = 1.05
• Initial tension maintenance: catenary
• Belt material: polyamide
• Drive geometry, d, D
• Belt thickness: t
• Belt width: b

The last four could be design variables. Let’s make a few more a priori decisions.

d = 16 in, D = 2.25d = 2.25(16) = 36 in.

Use polyamide A-3 belt; therefore t = 0.13 in and C_{v} = 1.

Now there is one design decision remaining to be made, the belt width b.

Table 17–2:      γ = 0.042 lbf/in^{3}      f = 0.8     F_{a} = 100  lbf/in  at  600  rev/min

 

Table 17–2
Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)

Coefficient of Friction Specific Weight,

lbf/in^{3}

Allowable Tension per Unit Width at 600 ft/min,

lbf/in

Minimum Pulley Diameter,

in

Size,

in

Specification Material
0.4 0.035–0.045 30 3 t =\frac{11}{64} 1 ply Leather
0.4 0.035–0.045 33 3\frac{1}{2} t =\frac{13}{64}
0.4 0.035–0.045 41 4\frac{1}{2} t =\frac{18}{64} 2 ply
0.4 0.035–0.045 50 6^{a} t=\frac{20}{64}
0.4 0.035–0.045 60 9^{a} t=\frac{23}{64}
0.5 0.035 10 0.60 t= 0.03 F–0^{c} Polyamide^{b}
0.5 0.035 35 1.0 t = 0.05 F–1^{c}
0.5 0.051 60 2.4 t = 0.07 F–2^{c}
0.8 0.037 60 2.4 t = 0.11 A–2^{c}
0.8 0.042 100 4.3 t = 0.13 A–3^{c}
0.8 0.039 175 9.5 t = 0.20 A–4^{c}
0.8 0.039 275 13.5 t = 0.25 A–5^{c}
0.7 0.038–0.045 5.2^{e} See t = 0.062 w = 0.50 Urethane^{d}
0.7 0.038–0.045 9.8^{e} Table t = 0.078 w = 0.75
0.7 0.038–0.045 18.9^{e} 17–3 t = 0.090 w = 1.25
0.7 0.038–0.045 8.3^{e} See d=\frac{1}{4} Round
0.7 0.038–0.045 18.6^{e} Table d=\frac{3}{8}
0.7 0.038–0.045 33.0^{e} 17–3 d=\frac{1}{2}
0.7 0.038–0.045 74.3^{e} d=\frac{3}{4}

a: Add 2 in to pulley size for belts 8 in wide or more.
b: Source: Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.
c: Friction cover of acrylonitrile-butadiene rubber on both sides.
d: Source: Eagle Belting Co., Des Plaines, Ill.
e: At 6% elongation; 12% is maximum allowable value.

Table 17–4:       C_{p} = 0.94

Table 17–4
Pulley Correction Factor C_{p} for Flat Belts*

Small-Pulley Diameter, in Material
Over 31.5 18 to 31.5 14, 16 9 to 12.5 4.5 to 8 1.6 to 4
1.0 0.9 0.8 0.7 0.6 0.5 Leather
1.0 1.0 1.0 1.0 1.0 0.95 F–0 Polyamide,
1.0 1.0 1.0 0.95 0.92 0.70 F–1
1.0 1.0 1.0 0.96 0.86 0.73 F–2
1.0 1.0 1.0 0.96 0.86 0.73 A–2
1.0 0.96 0.94 0.87 0.70 __ A–3
0.92 0.85 0.80 0.71 __ __ A–4
0.91 0.77 0.72 __ __ __ A–5

*Average values of C_{p} for the given ranges were approximated from curves in the Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

Eq. (17–12):

(F_{1})_{a} = bF_{a}C_{p}C_{v}            (17–12)

F_{1a} = b(100)0.94(1) = 94.0b lbf               (1)

H_{d} = H_{nom}K_{s}n_{d} = 60(1.15)1.05 = 72.5 hp
T =\frac{63  025H_{d}}{n} =\frac{63  025(72.5)}{860} = 5310 lbf · in

Estimate exp( f \phi) for full friction development:

Eq. (17–1):

θ_{d} = π − 2 sin^{−1} \frac{D − d}{2C}
θ_{D} = π + 2 sin^{−1} \frac{ D − d}{2C}
(17–1)

\phi = θ_{d} = π − 2 sin^{−1} \frac{36 − 16}{2(16)12} = 3.037 rad
exp( f  \phi) = exp[0.80(3.037)] = 11.35

Estimate centrifugal tension F_{c} in terms of belt width b:

w = 12 γ  bt = 12(0.042)b(0.13) = 0.0655b lbf/ft
V = πdn/12 = π(16)860/12 = 3602 ft/min

Eq. (e):

F_{c} =\frac{w}{g} \left(\frac{V}{60}\right)^{2}=\frac{w}{32.17} \left(\frac{V}{60}\right)^{2}                    (e)

F_{c} =\frac{w}{g} \left(\frac{V}{60}\right)^{2}=\frac{0.0655b}{32.17} \left(\frac{3602}{60}\right)^{2}= 7.34b lbf                  (2)

For design conditions, that is, at H_{d} power level, using Eq. (h) gives

F_{1} − F_{2} =\frac{2T}{D} =\frac{T}{D/2}                        (h)

(F_{1})_{a} − F_{2} = 2T/d = 2(5310)/16 = 664 lbf                    (3)
F_{2} = (F_{1})_{a} − [(F_{1})_{a} − F_{2}] = 94.0b − 664 lbf                      (4)

Using Eq. (i) gives

F_{i} =\frac{F_{1} + F_{2}}{2} − F_{c}                            (i )

F_{i} =\frac{(F_{1})_{a} + F_{2}}{2} − F_{c} =\frac{94.0b + 94.0b − 664}{2} − 7.34b = 86.7b − 332 lbf                        (5)

Place friction development at its highest level, using Eq. (17–7):

\frac{F_{1} − mr^{2}ω^{2}}{F_{2} − mr^{2}ω^{2}} =\frac{F_{1} − F_{c}}{F_{2} − F_{c}} = exp( f  \phi)                (17–7)

f  \phi = ln \frac{(F_{1})_{a} − F_{c}}{F_{2} − F_{c}} = ln \frac{94.0b − 7.34b}{94.0b − 664 − 7.34b} =ln \frac{86.7b}{86.7b − 664}

Solving the preceding equation for belt width b at which friction is fully developed gives

b =\frac{664}{86.7} \frac{exp( f \phi)}{exp( f \phi) − 1 }=\frac{664}{86.7} \frac{11.38}{11.38 − 1} =8.40 in

A belt width greater than 8.40 in will develop friction less than f = 0.80. The manufacturer’s data indicate that the next available larger width is 10-in.

Use 10-in-wide belt.
It follows that for a 10-in-wide belt

Eq. (2):      F_{c} = 7.34(10) = 73.4 lbf
Eq. (1):       (F_{1})_{a} = 94(10) = 940 lbf
Eq. (4):      F_{2} = 94(10) − 664 = 276 lbf
Eq. (5):      F_{i} = 86.7(10) − 332 = 535 lbf

The transmitted power, from Eq. (3), is

H_{t} =\frac{[(F_{1})_{a} − F_{2}]V}{33  000} =\frac{664(3602)}{33  000} = 72.5 hp

and the level of friction development f^{′}, from Eq. (17–7) is

\frac{F_{1} − mr^{2}ω^{2}}{F_{2} − mr^{2}ω^{2}} =\frac{F_{1} − F_{c}}{F_{2} − F_{c}} =exp( f  \phi)                            (17–7)

f^{′}=\frac{1}{\phi} ln \frac{(F_{1})_{a} − F_{c}}{F_{2} − F_{c}} =\frac{1}{3.037} ln \frac{940 − 73.4}{276 − 73.4} = 0.479

which is less than f = 0.8, and thus is satisfactory. Had a 9-in belt width been available, the analysis would show (F_{1})_{a} = 846  lbf, F_{2} = 182  lbf, F_{i} = 448  lbf,  and  f^{′} = 0.63. With a figure of merit available reflecting cost, thicker belts (A-4 or A-5) could be examined to ascertain which of the satisfactory alternatives is best. From Eq. (17–13) the catenary dip is

d =\frac{12L^{2}w}{8F_{i}} =\frac{3L^{2}w}{2F_{i}}                      (17–13)

d =\frac{3L^{2}w}{2F_{i}}=\frac{3(15^{2})0.0655(10)}{2(535)} = 0.413 in


Table 17–3
Minimum Pulley Sizes for Flat and Round Urethane
Belts. (Listed are the Pulley Diameters in Inches)
Source: Eagle Belting Co., Des Plaines, Ill.

Ratio of Pulley Speed to Belt Length,

rev/(ft • min)

Belt Size, in Belt Style
500 to 1000 250 to 499 Up to 250
0.50 0.44 0.38 0.50 × 0.062 Flat
0.75 0.63 0.50 0.75 × 0.078
0.75 0.63 0.50 1.25 × 0.090
2.00 1.75 1.50 \frac{1}{4} Round
3.00 2.62 2.25 \frac{3}{8}
4.00 3.50 3.00 \frac{1}{2}
7.00 6.00 5.00 \frac{3}{4}

Related Answered Questions