Design a four-bar mechanism so that \theta_{12}=70^{\circ} \text { and } \phi_{12}=50^{\circ} . Length of fixed link is 4 cm. Input and output links rotate anti-clockwise.
Design a four-bar mechanism so that \theta_{12}=70^{\circ} \text { and } \phi_{12}=50^{\circ} . Length of fixed link is 4 cm. Input and output links rotate anti-clockwise.
\cos (θ-\phi | θ-Φ
deg |
\cos θ | θ, deg | \cos \phi | Φ, deg | y | x | Precision point |
-0.525 | -121.65 | -0.190 | 100.98 | -0.736 | 222.63 | 1.014 | 10.33 | 1 |
-0.605 | -127.24 | 0.259 | 75 | -0.926 | 202.24 | 0.778 | 6 | 2 |
-0.263 | -105.25 | 0.656 | 49.02 | -0.901 | 154.27 | 0.223 | 1.67 | 3 |
The Freudenstein’s equations becomes
\left[\begin{array}{rrr} -0.736 & -0.190 & 1 \\ -0.926 & 0.259 & 1 \\ -0.901 & 0.656 & 1 \end{array}\right]\left\{\begin{array}{l} k_{1} \\ k_{2} \\ k_{3} \end{array}\right\}=\left\{\begin{array}{l} -0.525 \\ -0.605 \\ -0.263 \end{array}\right\} .
A=\left|\begin{array}{rrr} -0.736 & -0.190 & 1 \\ -0.926 & 0.259 & 1 \\ -0.901 & 0.656 & 1 \end{array}\right|=-0.087 .
A_{1}=\left|\begin{array}{rrr} -0.525 & -0.190 & 1 \\ -0.605 & 0.259 & 1 \\ -0.263 & 0.656 & 1 \end{array}\right|=-0.185, A_{2}=\left|\begin{array}{rrr} -0.736 & -0.525 & 1 \\ -0.926 & -0.605 & 1 \\ -0.901 & -0.263 & 1 \end{array}\right|=-0.063.
A_{3}=\left|\begin{array}{rrr} -0.736 & -0.190 & -0.525 \\ -0.926 & 0.259 & -0.605 \\ -0.901 & 0.656 & -0.263 \end{array}\right|=-0.103 .
k_{1}=\frac{A_{1}}{A}=\frac{-0.185}{-0.087}=0.126=\frac{d}{a}, a=\frac{d}{2.126} .
k_{2}=\frac{A_{2}}{A}=\frac{-0.063}{-0.087}=0.724=-\frac{d}{c} \text { or } \frac{d}{c}=-0.724, c=\frac{-d}{0.724} .
k_{3}=\frac{A_{3}}{A}=\frac{-0.103}{-0.087}=1.184=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c} .
\left(\frac{d}{2.126}\right)^{2}-b^{2}+\left(\frac{-d^{2}}{0.724}\right)+d^{2}=1.184 \times 2 \times \frac{d}{2.126} \times\left(\frac{-d^{2}}{0.724}\right) .
\frac{d^{2}}{4.52}-b^{2}+\frac{d^{2}}{0.524}+d^{2}=-1.538 d^{2} .
\text { 2. Rotate } O _{2} O _{4} \text { about } O_{4} \text { through } \phi_{12} / 2=25^{\circ} \text { clockwise. The point of intersection of these two lines }\text { locates relative pole } R_{12} .
\text { 3. Construct an angle } \psi_{12}=\frac{1}{2}\left(\theta_{12}-\phi_{12}\right)=\frac{1}{2}\left(70^{\circ}-50^{\circ}\right)=10^{\circ} \text { at } R_{12} . Join any two points on the two arms of this angle to obtain the coupler link AB. Join A with O_{2} \text { and } B \text { with } O_{4} to get the input and output links.
\text { 4. } O_{2} A B O_{4} \text { is the desired mechanism. } .