Question 16.3: Design a four-bar mechanism to coordinate three positions of...

Design a four-bar mechanism to coordinate three positions of the input and output links given by: \theta_{1}=25, \phi_{1}=30^{\circ} ; \theta_{2}=35^{\circ}, \phi_{2}=40^{\circ} ; \theta_{3}=50^{\circ}, \phi_{3}=60^{\circ} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\cos \theta_{1}=\cos 25^{\circ}=0.9063, \cos \theta_{2}=\cos 35^{\circ}=0.8191, \cos \theta_{3}=\cos 50^{\circ}=0.6428 .

\cos \phi_{1}=\cos 30^{\circ}=0.8660, \cos \phi_{2}=\cos 40^{\circ}=0.7660, \cos \phi_{3}=\cos 60^{\circ}=0.5000 .

\cos \left(\theta_{1}-\phi_{1}\right)=\cos \left(25^{\circ}-30^{\circ}\right)=0.9962 .

\cos \left(\theta_{2}-\phi_{2}\right)=\cos \left(35^{\circ}-40^{\circ}\right)=0.9962 .

\cos \left(\theta_{2}-\phi_{2}\right)=\cos \left(50^{\circ}-60^{\circ}\right)=0.9848 .

A=\left|\begin{array}{lll} 0.8660 & 0.9063 & 1 \\ 0.7660 & 0.8191 & 1 \\ 0.5000 & 0.6428 & 1 \end{array}\right| .

=0.8660(0.8191-0.6428)-0.9063(0.7660-0.5000)+1(0.7666 \times 0.6428 -0.8191 \times 0.5000) .

=5.5652 \times 10^{-3} .

A_{1}=\left|\begin{array}{lll} 0.9962 & 0.9063 & 1 \\ 0.9962 & 0.8191 & 1 \\ 0.9848 & 0.6428 & 1 \end{array}\right| .

=0.9962(0.8191-0.6428)-0.9063(0.9962-0.9848)+1(0.9962 \times 0.6428 -0.8191 \times 0.9848).

=-9.9408 \times 10^{-4} .

A_{2}=\left|\begin{array}{lll} 0.8660 & 0.9063 & 1 \\ 0.7660 & 0.9962 & 1 \\ 0.5000 & 0.9848 & 1 \end{array}\right| .

=0.8660(0.9962-0.9848)-0.9962(0.7660-0.5000)+1(0.7660 \times 0.9848 -0.9962) \times 0.5000).

=-1.14 \times 10^{2} .

A_{3}=\left|\begin{array}{lll} 0.8660 & 0.9962 & 0.9962 \\ 0.7660 & 0.8191 & 0.9962 \\ 0.5000 & 0.6428 & 0.9848 \end{array}\right| .

=0.8660(0.8191 \times 0.9848-0.9962 \times 0.6428)-0.9063(0.7660 \times 0.9848 -0.9962 \times 0.5000) .

=5.746 \times 10^{-3} .

k_{1}=\frac{A_{1}}{A}=\frac{-9.9408 \times 10^{-4}}{-5.5652 \times 10^{-3}}=0.1786=\frac{d}{a} .

Let d=1 unit, then a=5.598 units

k_{2}=\frac{A_{2}}{A}=\frac{1.14 \times 10^{-3}}{-5.5652 \times 10^{-3}}=-0.2048 .

=-\frac{d}{c}, c=4.88 \text { units } .

k_{3}=\frac{A_{3}}{A}=\frac{-5.764 \times 10^{-3}}{-5.5652 \times 10^{-3}}=1.0272 .

=\frac{a^{2}-b^{2}+c^{2}+d^{2}}{2 a c} .

=\frac{(5.598)^{2}=b^{2}+(4.88)^{2}}{2 \times 5.598 \times 4.88}, \quad b=0.176 .

The mechanism is shown in Fig.16.18.

16.18

Related Answered Questions

Consider a four-bar mechanism as shown in Fig.16.1...