Question 18.40: Design a series voltage regulator with the following specifi...

Design a series voltage regulator with the following specifications: V_{o} = 20 V; V_{in} = (22 –30) V; I_{L} (max) = 50 mA.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Refer to Fig. 18.30.
Selection of Zener diode

R_{L\,min} =\frac{V_{o}}{I_{L(max)}}=\frac{20}{50 × 10^{– 3}} = 400 Ω
V_{z} ≈\frac{V_{o}}{2}=\frac{20}{2} = 10 V

Hence, the Zener diode 0.5Z10 is chosen.

Since I_{R1} > I_{B2}, I_{R1} >\frac{I_{C2}}{β}, I_{R1} > \frac{10 × 10^{– 3}}{150}
I_{R1} > 66.7 μA
Let I_{R1} ≈ I_{R2} ≈ I_{R3} = 10 mA (neglecting I_{B2})
Let I_{C2} ≈ I_{E2} = 10 mA
So, the current flowing through the Zener,
I_{z} = I_{E2} + I_{R1} = 20 mA
P_{z} = V_{z}I_{z} = 10 × 20 × 10^{–3}
= 0.2 W < 0.5 W
Hence selection of 0.5WZ10 Zener diode is confirmed.

Selection of transistor Q_{1}
I_{E1} = I_{R1} + I_{R2} + I_{L}
= (10 + 10 + 50) mA = 70 mA
V_{i\,(max)} – V_{0} = 30 – 20 = 10 V

For transistor SL100, the ratings are
I_{C(max)} = 500 mA
V_{CE(max)} = 50 V
h_{FE} = 50 to 280
Hence, SL100 can be chosen for Q_{1}.
Selection of transistor Q_{2}
From the figure, V_{CE2(max)} + V_{z} = (V_{o} + V_{BE1})
Therefore, V_{CE2(max)} = (V_{o} + V_{BE1}) – V_{z} = 20.6 – 10 = 10.6 V
For transistor BC107, the ratings are
V_{CEO(max)} = 45 V
I_{C(max)} = 200 mA
h_{FE} = 125 – 300
Hence, transistor BC107 is selected for Q_{2}.
Selection of resistors R_{1}, R_{2} and R_{3}
V_{R1} = V_{o} – V_{z} = 20 – 10 = 10 V
R_{1} =\frac{V_{R1}}{I_{R1}}=\frac{10}{10 × 10^{– 3}} = 1 kΩ
V_{R2} = V_{o} – V_{R3} = 20 – 10.6 = 9.4 V
R_{2} =\frac{V_{R2}}{I_{R2}}=\frac{9.4}{10 × 10^{– 3}}= 940 Ω
V_{R3} = V_{z} + V_{BE2(sat)}
= 10 + 0.6 = 10.6 V
R_{3} =\frac{V_{R3}}{I_{R3}}=\frac{10.6}{10 × 10^{–3}} = 1060 Ω
Selection of resistor R_{4}
V_{B1} = V_{C 2} = V_{o} + V_{BE1} = 20 + 0.6 = 20.6 V
I_{B1} =\frac{I_{C1}}{β}=\frac{70 × 10^{– 3}}{50} = 1.4 mA

I_{R4} = I_{B1} + I_{C 2} = 11.4 mA

R_{4(max)} =\frac{V_{R4(max)}}{I_{R4}}=\frac{V_{i(max)} – V_{B1}}{I_{R4}}

= \frac{30 – 20.6}{11.4 × 10^{– 3}} = 825 Ω

R_{4(min)} =\frac{V_{R4(min)}}{I_{R4}}=\frac{V_{i(min)} – V_{B1}}{I_{R4}}

= \frac{22 – 20.6}{11.4 × 10^{– 3}} = 123 Ω

R_{4} =\frac{R_{4(max)} + R_{4(min)}}{2} = 474 Ω

40

Related Answered Questions