Design a tuned amplifier using FET to have f_{O} = 1 MHz, 3 dB bandwidth = 10 kHz and maximum gain = –10. Assume g_{m} = 5 mA/V, r_{d} = 10 kΩ.
Design a tuned amplifier using FET to have f_{O} = 1 MHz, 3 dB bandwidth = 10 kHz and maximum gain = –10. Assume g_{m} = 5 mA/V, r_{d} = 10 kΩ.
Given f_{O} = 1 MHz, BW = 10 kHz, A_{V} = –10, Q = 100, g_{m} = 5 mA/V and r_{d} = 10 k \Omega
(a) At f_{O} , A_{V} = – g_{m} R
Therefore, – 10 = – 5 × 10^{– 3} R
Hence, R = 2 k \Omega
(b) R = R_{p} || r_{d} = 2 k \Omega
R_{p} || 10 × 10^{3} = 2 × 10^{3} \Omega
\frac{R_{p}\times 10^{4} }{R_{p} \times 10^{4}}=2\times 10^{3}
Therefore, R_{p} = 2.5 k \Omega
(c) BW=\frac{f_{o} }{Q}=\frac{1\times 10^{6} }{100}=10 KHz
(d) Q=\frac{R}{\omega _{0} L}
100=\frac{2\times 10^{3}}{2\pi \times 10^{6}\times L}
Therefore, L = 3.18 \mu H
(e) f_{O}=\frac{1}{2\pi \sqrt{LC} }
Therefore, C=\frac{1}{4\pi ^{2}f^{2}_{O}\times L }=\frac{1}{4\pi ^{2}\times 10^{12} \times 3.18\times 10^{-6} }=7.965 nF