Question 12.12: Design a vaporiser to vaporise 5000 kg/h n-butane at 5.84 ba...

Design a vaporiser to vaporise 5000 kg/h n-butane at 5.84 bar. The minimum temperature of the feed (winter conditions) will be 0ŽC. Steam is available at 1.70 bar (10 psig).

Tube sheet layout, U-tubes, Example 12.9

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Only the thermal design and general layout will be done. Select kettle type.

Physical properties of n-butane at 5.84 bar:

 

\text { boiling point }=56.1^{\circ} C

 

latent heat = 326 kJ/kg

 

\text { mean specific heat, liquid }=2.51 kJ / kg ^{\circ} C

 

\text { critical pressure, } P_{c}=38 \text { bar }

 

Heat loads:

 

\text { sensible heat }(\text { maximum })=(56.1-0) 2.51=140.8 kJ / kg

 

\text { total heat load }=(140.8+326) \times \frac{5000}{3600}=648.3 kW

 

add 5 per cent for heat losses

 

\begin{aligned}\text { maximum heat load }(\text { duty }) &=1.05 \times 648.3 \\&=681 kW\end{aligned}

 

From Figure 12.1 assume U = 1000 W / m ^{2}{ }^{\circ} C \text {. }

Mean temperature difference; both sides isothermal, steam saturation temperature at 1.7 bar = 115.2{ }^{\circ} C

 

\Delta T_{m}=115.2-56.1=59.1^{\circ} C

 

\text { Area (outside) required }=\frac{681 \times 10^{3}}{1000 \times 59.1}=11.5 m ^{2}

 

Select 25 mm i.d., 30 mm o.d. plain U-tubes,

Nominal length 4.8 m (one U-tube)

 

\text { Number of } U \text { tubes }=\frac{11.5}{\left(30 \times 10^{-3}\right) \pi 4.8}=25

 

\text { Use square pitch arrangement, pitch }=1.5 \times \text { tube p.d. }

 

=1.5 \times 30=45 mm

 

Draw a tube layout diagram, take minimum bend radius

 

1.5 \times \text { tube o.d. }=45 mm

 

Proposed layout gives 26 U-tubes, tube outer limit diameter 420 mm.

Boiling coefficient

Use Mostinski’s equation:

heat flux, based on estimated area,

 

q=\frac{681}{11.5}=59.2 kW / m ^{2}

 

\begin{aligned}h_{n b} &=0.104(38)^{0.69}\left(59.2 \times 10^{3}\right)^{0.7}\left[1.8\left(\frac{5.84}{38}\right)^{0.17}+4\left(\frac{5.84}{38}\right)^{1.2}+10\left(\frac{5.84}{38}\right)^{10}\right] \\&=4855 W / m ^{2}{ }^{\circ} C\end{aligned} (12.63)

 

Take steam condensing coefficient as 8000 W / m ^{2}{ }^{\circ} C, fouling coefficient 5000 W / m ^{2}{ }^{\circ} C;

butane fouling coefficient, essentially clean, 10,000 W / m ^{2}{ }^{\circ} C.

Tube material will be plain carbon steel, k_{w}=55 W / m ^{\circ} C

 

\begin{aligned}\frac{1}{U_{o}} &=\frac{1}{4855}+\frac{1}{10,000}+\frac{30 \times 10^{-3} \ln \frac{30}{25}}{2 \times 55}+\frac{30}{25}\left(\frac{1}{5000}+\frac{1}{8000}\right) \\U_{o} &=1341 W / m ^{2}{ }^{\circ} C\end{aligned} (12.2)

 

Close enough to original estimate of 1000 W / m ^{2}{ }^{\circ} C for the design to stand.

Myers and Katz (Chem. Eng. Prog. Sym. Ser. 49(5) 107 114) give some data on the boiling of n-butane on banks of tubes. To compare the value estimate with their values an estimate of the boiling film temperature difference is required:

 

=\frac{1341}{4855} \times 59.1=16.3^{\circ} C

 

Myers data, extrapolated, gives a coefficient of around 3000 Btu/h ft ^{2} F \text { at } a 29^{\circ} F temperature difference = 17,100 W / m ^{2}{ }^{\circ} C, so the estimated value of 4855 is certainly on the safe side.

Check maximum allowable heat flux. Use modified Zuber equation.

 

\text { Surface tension }(\text { estimated })=9.7 \times 10^{-3} N / m

 

\rho_{L}=550 kg / m ^{3}

 

\rho_{v}=\frac{58}{22.4} \times \frac{273}{(273+56)} \times 5.84=12.6 kg / m ^{3}

 

N_{t}=52

 

\text { For square arrangement } K_{b}=0.44

 

\begin{aligned}q_{c} &=0.44 \times 1.5 \times \frac{326 \times 10^{3}}{\sqrt{52}}\left[9.7 \times 10^{-3} \times 9.81(550-12.6) 12.6^{2}\right]^{0.25} \\&=283,224 W / m ^{2} \\&=280 kW / m ^{2}\end{aligned} (12.74)

 

Applying a factor of 0.7, maximum flux should not exceed 280 x 0.7 = 196 kW / m ^{2}.

Actual flux of 59.2 kW / m ^{2} is well below maximum allowable.

Layout

 

\text { From tube sheet layout } D_{b}=420 mm \text {. }

 

Take shell diameter as twice bundle diameter

 

D_{s}=2 \times 420=840 mm .

 

Take liquid level as 500 mm from base,

freeboard = 840 – 500 = 340 mm, satisfactory.

From sketch, width at liquid level = 0.8 m.

Surface area of liquid = 0.8 x 2.4 = 1.9 m ^{2}.

 

\text { Vapour velocity at surface }=\frac{5000}{3600} \times \frac{1}{12.6} \times \frac{1}{1.9}=\underline{\underline{0.06 m / s }}

 

Maximum allowable velocity

 

\hat{u}_{v}=0.2\left[\frac{550-12.6}{12.6}\right]^{1 / 2}=\underline{\underline{\underline{1.3} m / s }} (12.75)

 

so actual velocity is well below maximum allowable velocity. A smaller shell diameter could be considered.

12.122
12.2...
12.12..

Related Answered Questions