Question 12.1: Design an exchanger to sub-cool condensate from a methanol c...

Design an exchanger to sub-cool condensate from a methanol condenser from 95ºC to 40ºC. Flow-rate of methanol 100,000 kg/h. Brackish water will be used as the coolant, with a temperature rise from 25º to 40ºC.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Only the thermal design will be considered.

This example illustrates Kern’s method.

Coolant is corrosive, so assign to tube-side.

 

 Heat capacity methanol =2.84kJ/kgC\text { Heat capacity methanol }=2.84 kJ / kg ^{\circ} C

 

 Heat load =100,0003600×2.84(9540)=4340kW\text { Heat load }=\frac{100,000}{3600} \times 2.84(95-40)=4340 kW

 

 Heat capacity water =4.2kJ/kgC\text { Heat capacity water }=4.2 kJ / kg ^{\circ} C

 

 Cooling water flow =43404.2(4025)=68.9kg/s\text { Cooling water flow }=\frac{4340}{4.2(40-25)}=68.9 kg / s

 

ΔTlm=(9540)(4025)ln(9540)(4025)=31C\Delta T_{\operatorname{lm}}=\frac{(95-40)-(40-25)}{\ln \frac{(95-40)}{(40-25)}}=31^{\circ} C (12.4)

 

Use one shell pass and two tube passes

 

R=95404025=3.67R=\frac{95-40}{40-25}=3.67 (12.6)

 

S=40259525=0.21S=\frac{40-25}{95-25}=0.21 (12.7)

 

From Figure 12.19

 

Ft=0.85F_{t}=0.85

 

ΔTm=0.85×31=26C\Delta T_{m}=0.85 \times 31=26^{\circ} C

 

From Figure 12.1

 

U=600W/m2CU=600 W / m ^{2}{ }^{\circ} C

 

Provisional area

 

A=4340×10326×600=278m2A=\frac{4340 \times 10^{3}}{26 \times 600}=278 m ^{2} (12.1)

 

Choose 20 mm o.d., 16 mm i.d., 4.88-m-long tubes (34in.×16ft)\left(\frac{3}{4} in . \times 16 ft \right), cupro-nickel.

Allowing for tube-sheet thickness, take

L = 4.83 m

 

 Area of one tube =4.83×20×103π=0.303m2\text { Area of one tube }=4.83 \times 20 \times 10^{-3} \pi=0.303 m ^{2}

 

 Number of tubes =2780.303=918\text { Number of tubes }=\frac{278}{0.303}=\underline{\underline{918}}

 

As the shell-side fluid is relatively clean use 1.25 triangular pitch.

 

 Bundle diameter Db=20(9180.249)1/2.207=826mm\text { Bundle diameter } D_{b}=20\left(\frac{918}{0.249}\right)^{1 / 2.207}=826 mm (12.3b)

 

Use a split-ring floating head type.

From Figure 12.10, bundle diametrical clearance = 68 mm,

 

 shell diameter, Ds=826+68=894mm\text { shell diameter, } D_{s}=826+68=894 mm

 

(Note. nearest standard pipe sizes are 863.6 or 914.4 mm).

Shell size could be read from standard tube count tables.

Tube-side coefficient

 

 Mean water temperature =40+252=33C\text { Mean water temperature }=\frac{40+25}{2}=33^{\circ} C

 

 Tube cross-sectional area =π4×162=201mm2\text { Tube cross-sectional area }=\frac{\pi}{4} \times 16^{2}=201 mm ^{2}

 

 Tubes per pass =9182=459\text { Tubes per pass }=\frac{918}{2}=459

 

 Total flow area =459×201×106=0.092m2\text { Total flow area }=459 \times 201 \times 10^{-6}=0.092 m ^{2}

 

 Water mass velocity =68.90.092=749kg/sm2\text { Water mass velocity }=\frac{68.9}{0.092}=749 kg / s m ^{2}

 

 Density water =995kg/m3\text { Density water }=995 kg / m ^{3}

 

 Water linear velocity =749995=0.75m/s\text { Water linear velocity }=\frac{749}{995}=0.75 m / s

 

hi=4200(1.35+0.02×33)0.750.8160.2=3852W/m2Ch_{i}=\frac{4200(1.35+0.02 \times 33) 0.75^{0.8}}{16^{0.2}}=3852 W / m ^{2{ }^{\circ} C } (12.17)

 

The coefficient can also be calculated using equation 12.15; this is done to illustrate use of this method.

 

hidikf=jhRePrr0.33(μμw)0.14\frac{h_{i} d_{i}}{k_{f}}=j_{h} \operatorname{RePr} r^{0.33}\left(\frac{\mu}{\mu_{w}}\right)^{0.14} (12.15)

 

hidikf=jhRePr0.33(μμw)0.14\frac{h_{i} d_{i}}{k_{f}}=j_{h} \operatorname{RePr}{ }^{0.33}\left(\frac{\mu}{\mu_{w}}\right)^{0.14}

 

 Viscosity of water =0.8mNs/m2\text { Viscosity of water }=0.8 mNs / m ^{2}

 

 Thermal conductivity =0.59W/mC\text { Thermal conductivity }=0.59 W / m ^{\circ} C

 

Re=ρudiμ=995×0.75×16×1030.8×103=14,925R e=\frac{\rho u d_{i}}{\mu}=\frac{995 \times 0.75 \times 16 \times 10^{-3}}{0.8 \times 10^{-3}}=14,925

 

Pr=Cpμkf=4.2×103×0.8×1030.59=5.7\operatorname{Pr}=\frac{C_{p} \mu}{k_{f}}=\frac{4.2 \times 10^{3} \times 0.8 \times 10^{-3}}{0.59}=5.7

 

 Neglect (μμw)\text { Neglect }\left(\frac{\mu}{\mu_{w}}\right)

 

Ldi=4.83×10316=302\frac{L}{d_{i}}=\frac{4.83 \times 10^{3}}{16}=302

 

 From Figure 12.23,jh=3.9×103\text { From Figure } 12.23, j_{h}=3.9 \times 10^{-3}

 

hi=0.5916×103×3.9×103×14,925×5.70.33=3812W/m2Ch_{i}=\frac{0.59}{16 \times 10^{-3}} \times 3.9 \times 10^{-3} \times 14,925 \times 5.7^{0.33}=3812 W / m ^{2{ }^{\circ} C }

 

Checks reasonably well with value calculated from equation 12.17; use lower figure.

Shell-side coefficient

 

 Choose baffle spacing =Ds5=8945=178mm\text { Choose baffle spacing }=\frac{D_{s}}{5}=\frac{894}{5}=178 mm

 

 Tube pitch =1.25×20=25mm\text { Tube pitch }=1.25 \times 20=25 mm

 

 Cross-flow area As=(2520)25894×178×106=0.032m2\text { Cross-flow area } A_{s}=\frac{(25-20)}{25} 894 \times 178 \times 10^{-6}=0.032 m ^{2} (12.21)

 

 Mass velocity, GS=100,0003600×10.032=868kg/sm2\text { Mass velocity, } G_{S}=\frac{100,000}{3600} \times \frac{1}{0.032}=868 kg / s m ^{2}

 

 Equivalent diameter de=1.120(2520.917×202)=14.4mm\text { Equivalent diameter } d_{e}=\frac{1.1}{20}\left(25^{2}-0.917 \times 20^{2}\right)=14.4 mm (12.23)

 

 Mean shell side temperature =95+402=68C\text { Mean shell side temperature }=\frac{95+40}{2}=68^{\circ} C

 

 Methanol density =750kg/m3\text { Methanol density }=750 kg / m ^{3}

 

 Viscosity =0.34mNs/m2\text { Viscosity }=0.34 mNs / m ^{2}

 

 Heat capacity =2.84kJ/kgC\text { Heat capacity }=2.84 kJ / kg ^{\circ} C

 

 Thermal conductivity =0.19W/mC\text { Thermal conductivity }=0.19 W / m ^{\circ} C

 

Re=Gsdeμ=868×14.4×1030.34×103=36,762R e=\frac{G_{s} d_{e}}{\mu}=\frac{868 \times 14.4 \times 10^{-3}}{0.34 \times 10^{-3}}=36,762 (12.24)

 

Pr=Cpμkf=2.84×103×0.34×1030.19=5.1\operatorname{Pr}=\frac{C_{p} \mu}{k_{f}}=\frac{2.84 \times 10^{3} \times 0.34 \times 10^{-3}}{0.19}=5.1

 

Choose 25 per cent baffle cut, from Figure 12.29

 

jh=3.3×103j_{h}=3.3 \times 10^{-3}

 

Without the viscosity correction term

 

hs=0.1914.4×103×3.3×103×36,762×5.11/3=2740W/m2Ch_{s}=\frac{0.19}{14.4 \times 10^{-3}} \times 3.3 \times 10^{-3} \times 36,762 \times 5.1^{1 / 3}=2740 W / m ^{2}{ }^{\circ} C

 

Estimate wall temperature

 

 Mean temperature difference =6833=35C\text { Mean temperature difference }=68-33=35^{\circ} C

 

across all resistances

 

 across methanol film =Uho×ΔT=6002740×35=8C\text { across methanol film }=\frac{U}{h_{o}} \times \Delta T=\frac{600}{2740} \times 35=8^{\circ} C

 

 Mean wall temperature =688=60C\text { Mean wall temperature }=68-8=60^{\circ} C

 

μw=0.37mNs/m2\mu_{w}=0.37 mNs / m ^{2}

 

(μμw)0.14=0.99\left(\frac{\mu}{\mu_{w}}\right)^{0.14}=0.99

 

which shows that the correction for a low-viscosity fluid is not significant.

Overall coefficient

 

Thermal conductivity of cupro-nickel alloys D 50 W/mCW / m ^{\circ} C.

Take the fouling coefficients from Table 12.2; methanol (light organic) 5000Wm2C1Wm ^{-2 \circ} C ^{-1},

brackish water (sea water), take as highest value, 3000 Wm2C1Wm ^{-2 \circ} C ^{-1}

 

Fluid  Coefficient (W/m2C)\text { Coefficient }\left( W / m ^{2}{ }^{\circ} C \right) Factor (resistance) (m2^2°C/W)
River water 300012,0003000-12,000 0.00030.00010.0003-0.0001
Sea water 100030001000-3000 0.0010.00030.001-0.0003
Cooling water (towers) 300060003000-6000 0.00030.000170.0003-0.00017
Towns water (soft) 300050003000-5000 0.00030.00020.0003-0.0002
Towns water (hard) 100020001000-2000 0.0010.00050.001-0.0005
Steam condensate 150050001500-5000 0.000670.00020.00067-0.0002
Steam (oil free) 400010,0004000-10,000 0.00250.00010.0025-0.0001
Steam (oil traces) 200050002000-5000 0.00050.00020.0005-0.0002
Refrigerated brine 300050003000-5000 0.00030.00020.0003-0.0002
Air and industrial gases 500010,0005000-10,000 0.00020.00010.0002-0.0001
Flue gases 200050002000-5000 0.00050.00020.0005-0.0002
Organic vapours 5000 0.0002
Organic liquids 5000 0.0002
Light hydrocarbons 5000 0.0002
Heavy hydrocarbons 2000 0.0005
Boiling organics 2500 0.0004
Condensing organics 5000 0.0002
Heat transfer fluids 5000 0.0002
Aqueous salt solutions 300050003000-5000 0.00030.00020.0003-0.0002

 

1Uo=12740+15000+20×103ln(2016)2×50\frac{1}{U_{o}}=\frac{1}{2740}+\frac{1}{5000}+\frac{20 \times 10^{-3} \ln \left(\frac{20}{16}\right)}{2 \times 50} +2016×13000+2016×13812+\frac{20}{16} \times \frac{1}{3000}+\frac{20}{16} \times \frac{1}{3812} Uo=738W/m2CU_{o}=738 W / m ^{2}{ }^{\circ} C (12.2)

 

 well above assumed value of 600W/m2C\text { well above assumed value of } 600 W / m ^{2}{ }^{\circ} C \text {. }

 

Pressure drop

Tube-side

 

 From Figure 12.24, for Re=14,925\text { From Figure } 12.24 \text {, for } \operatorname{Re}=14,925

 

jf=4.3×103j_{f}=4.3 \times 10^{-3}

 

Neglecting the viscosity correction term

 

ΔPt=2(8×4.3×103(4.83×10316)+2.5)995×0.7522\Delta P_{t}=2\left(8 \times 4.3 \times 10^{-3}\left(\frac{4.83 \times 10^{3}}{16}\right)+2.5\right) \frac{995 \times 0.75^{2}}{2} =7211N/m2=7.2kPa(1.1psi)=7211 N / m ^{2}=7.2 kPa (1.1 psi ) (12.20)

 

low, could consider increasing the number of tube passes.

Shell side

 

 Linear velocity =Gsρ=868750=1.16m/s\text { Linear velocity }=\frac{G_{s}}{\rho}=\frac{868}{750}=1.16 m / s

 

 From Figure 12.30, at Re=36,762\text { From Figure } 12.30, \text { at } \operatorname{Re}=36,762

 

jf=4×102j_{f}=4 \times 10^{-2}

 

Neglect viscosity correction

 

ΔPs=8×4×102(89414.4)(4.83×103178)750×1.1622\Delta P_{s}=8 \times 4 \times 10^{-2}\left(\frac{894}{14.4}\right)\left(\frac{4.83 \times 10^{3}}{178}\right) \frac{750 \times 1.16^{2}}{2} (12.26)

 

=272,019N/m2=272kPa(39psi) too high, \begin{array}{l}=272,019 N / m ^{2} \\=272 kPa (39 psi ) \text { too high, }\end{array}

 

could be reduced by increasing the baffle pitch. Doubling the pitch halves the shell-side velocity, which reduces the pressure drop by a factor of approximately (1/2)2(1 / 2)^{2}

 

ΔPs=2724=68kPa(10psi), acceptable \Delta P_{s}=\frac{272}{4}=68 kPa (10 psi ), \text { acceptable }

 

This will reduce the shell-side heat-transfer coefficient by a factor of (1/2)0.8(ho(1 / 2)^{0.8}\left(h_{o} \propto\right. Re0.8us0.8)\left.R e^{0.8} \propto u_{s}^{0.8}\right)

 

ho=2740×(12)0.8=1573W/m2Ch_{o}=2740 \times\left(\frac{1}{2}\right)^{0.8}=1573 W / m ^{2}{ }^{\circ} C

 

This gives an overall coefficient of 615 W/m2C still W / m ^{2}{ }^{\circ} C -\text { still } above assumed value of 600 W/m2CW / m ^{2}{ }^{\circ} C.

12.1
12.1.
12.1..
12.1...
12.1....
12.30
12.24

Related Answered Questions