Question 4.13: Design of a zener regulator The parameters of a 6.3-V zener ...

Design of a zener regulator The parameters of a 6.3-V zener diode for the voltage regulator circuit of Fig. 4.26(a) are V_{ Z }=6.3 V \text { at } I_{ ZT }=40 mA \text { and } R_{ Z }=2 \Omega . The supply voltage v_{ S }=V_{ S } can vary between 12 V and 18 V. The minimum load current is 0 mA. The minimum zener diode current i_{Z(\min )}  is 1 mA. The power dissipation P_{Z(\max )} of the zener diode must not exceed 750 mW at 25°C. Determine (a) the maximum permissible value of the zener current i_{Z(max)} , (b) the value of Rs that limits the zener current i_{Z(\max )}  to the value determined in part (a), (c) the power rating P_{ R } \text { of } R_{ s } , and (d) the maximum load current i_{ L (\max )} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

V_{ Z }=6.3 V \text { at } i_{ ZT }=40 mA , i_{ L (\min )}=0 \text { and } i_{ Z (\min )}=1 mA . Using Eq. (4.37), we have

 

v_{ Z }=v_{ ZO }+R_{ Z } i_{ Z }                                           (4.37)

 

V_{ ZO }=V_{ Z }-R_{ Z } I_{ ZT }=6.3-2 \times 40 mA =6.22 V

 

(a) The maximum power dissipation P_{Z(\max )} of a zener diode is

 

P_{Z(\max )}=i_{Z(\max )} V_{Z}=0.75 W

 

or                            i_{ Z (\max )}=\frac{P_{ Z ( max )}}{V_{Z}}=\frac{0.75}{6.3}=119 mA

 

(b) The zener current i_{ Z } becomes maximum when the supply voltage is maximum and the load current is minimum—that is, V_{ S (\max )}=18 V , i_{ L (\min )}=0, \text { and } i_{ Z (\max )}=119 mA . From Eq. (4.45),

 

R_{ s }=\frac{V_{ S (\max )}-\left(V_{ ZO }+R_{ Z } i_{ Z ( min )}\right)}{i_{ Z (\max )}+i_{ L ( min )}}                                      (4.45)

 

R_{ s }=\frac{V_{ S ( max )}-V_{ ZO }-R_{ Z } i_{ Z (\max )}}{i_{ Z (\max )}+i_{ L ( min )}}=\frac{18 V -6.22 V -2 \Omega \times 119 mA }{119 mA +0}=96.96 \Omega

 

(c) The power rating P_{ R } \text { of } R_{ s } is

 

\begin{aligned}P_{ R } &=\left(i_{ Z (\max )}+i_{ L (\min )}\right)\left(V_{ S (\max )}-V_{ ZO }-R_{ Z } i_{ Z (\max )}\right) \\&=119 mA \times(18 V -6.22 V -2 \Omega \times 119 mA )=1.373 W\end{aligned}

 

The worst-case power rating of R_{ s } will occur when the load is shorted. That is,

 

P_{ R (\max )}=\frac{V_{ S (\max )}^{2}}{R_{ s }}=\frac{18^{2}}{96.99}=3.34 W

 

(d)   i_{ L } must be maintained at the maximum when V_{ S } is minimum and i_{Z} is minimum—that is, V_{ S (\min )}=12 V and i_{ Z (\min )}=1 mA . From Eq. (4.44), we get

 

R_{ s }=\frac{V_{ S ( min )}-\left(V_{ ZO }+R_{ Z } i_{ Z ( min )}\right)}{i_{ Z ( min )}+i_{ L (\max )}}                                    (4.44)

 

\begin{aligned}I_{ L (\max )} &=\frac{V_{ S ( min )}-V_{ ZO }-R_{ Z } i_{ Z ( min )}}{R_{ s }}-i_{ Z ( min )}=\frac{12 V -6.22 V -2 \Omega \times 1 mA }{96.99 \Omega}-1 mA \\&=58.57 mA\end{aligned}

Related Answered Questions