Question 4.12: Design of a zener regulator The parameters of the zener diod...

Design of a zener regulator The parameters of the zener diode for the voltage regulator circuit of Fig. 4.26(a) are V_{ Z }=4.7 V at test current I_{ ZT }=53 mA , R_{ Z }=8 \Omega, \text { and } R_{ ZK }=500 \Omega \text { at } I_{ ZK }=1 mA . The supply voltage is v_{ S }=V_{ S }=12 \pm 2 V , \text { and } R_{ s }=220 \Omega .

(a) Find the nominal value of the output voltage v_{ O } under no-load condition R_{ L }=\infty.

(b) Find the maximum and minimum values of the output voltage for a load resistance of R_{ L }=470 \Omega .

(c) Find the nominal value of the output voltage v_{ O } for a load resistance of R_{ L }=100 \Omega .

(d) Find the minimum value of R_{ L } for which the zener diode operates in the breakdown region.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Eq. (4.37), we have

v_{ Z }=v_{ ZO }+R_{ Z } i_{ Z }                          (4.37)

 

V_{ ZO }=V_{ Z }-R_{ Z } I_{ ZT }=4.7 V -8 \Omega \times 53 mA =4.28 V

 

(a) For R_{ L }=\infty , the zener current is

 

i_{ Z }=\frac{ V _{ S }-V_{ ZO }}{R_{ Z }+R_{ s }}=\frac{12-4.28}{8+220}=33.86 mA

 

The output voltage is

 

v_{ O }=V_{ ZO }+R_{ Z } i_{ Z }=4.28 V +8 \Omega \times 33.86 mA =4.55 V

 

(b) A change in the supply voltage by \Delta v_{ S }=\pm 2 V  will cause a change in the output voltage, which we can find from Eq. (4.38):

 

\text { Line regulation }=\frac{\Delta v_{ O }}{\Delta v_{ S }}=\frac{R_{ Z }}{R_{ Z }+R_{ s }}                                      (4.38)

 

\Delta v_{ O (\text { supply })}=\frac{\Delta v_{ S } R_{ Z }}{R_{ Z }+R_{ s }}=\frac{\pm 2 \times 8}{8+220}=\pm 70.18 mV

 

The nominal value of the load current is i_{ L }=V_{ Z } / R_{ L }=4.7 / 470=10 mA . A change in the load current by \Delta i_{ L }=10 mA will also cause a change in the output voltage, which we can find from Eq. (4.39):

 

\text { Load regulation }=\frac{\Delta v_{ O }}{\Delta i_{ L }}=-\left(R_{ Z } \| R_{ s }\right)                                              (4.39)

 

\Delta v_{ O (\text { load })}=-\left(R_{ Z } \| R_{ s }\right) \Delta i_{ L }=-(8 \Omega \| 220 \Omega) \times 10 mA =-77.19 mV

 

Therefore, the maximum and minimum values of the output voltage can be found from

 

\begin{aligned}&v_{ O (\max )}=4.55 V +70.18 mV -77.19 mV =4.54 V \\&v_{ O (\min )}=4-70.18 mV -77.19 mV =4.47 V\end{aligned}

 

(c) The nominal value of the load current is i_{ L }=V_{ Z } / R_{ L }=4.7 / 100=47 mA , which is not possible because the maximum current that can flow through R_{ Z } is only 33.86 mA. Thus, the zener diode will be off, and the output voltage will be the voltage across R_{ L } . That is,

 

v_{ O }=\frac{R_{ L }}{R_{ L }+R_{ s }} V_{ S }=\frac{100}{100+220} \times 12=3.75 V

 

(d) For the zener diode to be operated in the breakdown region, allowing only I_{ ZK } to flow, the maximum current that can flow through R_{ L } is given by \text { (assuming } \left.I_{ ZK }=I_{ Z } \text { at } v_{ Z }=V_{ ZO }\right)

 

i_{ L (\max )}=\frac{V_{ S ( min )}-V_{ ZO }}{R_{ s }}-I_{ ZK }                                          (4.41)

 

=\frac{(10-4.28) V }{220 \Omega}-1 mA =25 mA

 

Therefore, the minimum value of R_{ L } that guarantees operation in the breakdown region is given by

 

R_{ L ( min )} \geq \frac{V_{ ZO }}{i_{ L (\max )}}                                     (4.42)

 

\geq \frac{4.28 V }{25 mA }=171.2 \Omega

Related Answered Questions