Question 9.11: Designing a Wilson current source (a) Design the Wilson curr...

Designing a Wilson current source

(a) Design the Wilson current source in Fig. 9.30(a) to give I_{ O }=5 \mu A . The parameters are V_{ CC }=30 V , V_{ BE 1}=V_{ BE 2}=V_{ BE 3}=0.7 V , V_{ T }=26 mV , V_{ A }=150 V , \text { and } \beta_{ F }=100 . Assume that all transistors are identical.

(b) Calculate the output resistance R_{ o } and Thevenin’s equivalent voltage V_{\text {Th }} .
(c) Use PSpice/SPICE to calculate the output current, the output resistance, and the reference current for \beta_{ F }=100 \text { and } 400 . Assume that all transistors are identical, and V_{ CE }=10 V .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

I_{ C 2}=5 \mu A , \text { and } V_{ T }=26 mV.

 

(a) From Eq. (9.120),

I_{ O }=I_{ C 2}-I_{ R }\left[\frac{\left(2+\beta_{ F }\right) \beta_{ F }}{\beta_{ F }^{2}+2 \beta_{ F }+2}\right]-I_{ R }\left[1-\frac{2}{\beta_{ F }^{2}+2 \beta_{ F }+2}\right]                                  (9.120)

 

5 \mu A =I_{ R }\left[1-\frac{2}{\left(100^{2}+2 \times 100+2\right)}\right]

 

so I_{ R } \approx 5 \mu A . The reference current is

I_{ R }=\frac{V_{ CC }-V_{ BE 1}-V_{ BE 2}}{R_{1}}

That is,

 5 \mu A =\frac{30-0.7-0.7}{R_{1}}

which gives R_{1}=5.72 M \Omega.

 

(b) From Eq. (9.118),

I_{ C 3}=I_{ C 2} \frac{1+\beta_{ F }}{2+\beta_{ F }}                                 (9.118)

 

I_{ C 3}=I_{ C 1}=\frac{5 \mu A \times(1+100)}{2+100}=4.95 \mu A

 

Then  r_{ ol }=r_{ o 3}=\frac{V_{ A }}{I_{ C 1}}=\frac{150}{4.95 \mu}=30.3 M \Omega

 

r_{ o 2}=\frac{V_{ A }}{I_{ C 2}}=\frac{150}{5 \mu}=30 M \Omega

 

Since 1 / g_{ m 1}=1 / g_{ m 3}=V_{ T } / I_{ C 1}=26 mV / 4.95 \mu A =5.25 k \Omega,

 

g_{ m 1}=g_{ m 3}=190.4 \mu A / V

 

Since 1 / g_{ m 2}=26 mV / 5 \mu A =5.2 k \Omega,

 

g_{ m 2}=192.3 \mu A / V

 

Then    r_{\pi 1}=r_{\pi 3}=\frac{\beta_{ F }}{g_{ m 1}}=100 \times 5.25 k =525 k \Omega

 

r_{\pi 2}=100 \times 5.2 k =520 k \Omega

 

From Eq. (9.124),

R_{ e }^{\prime}=\frac{v_{1}}{i}=\frac{r_{\pi 2}+\left(r_{ ol } \| R_{1}\right)}{1+\left(r_{ ol } \| R_{1}\right) g_{ m 1}}                           (9.124)

 

\begin{aligned}R_{ e }^{\prime} &=\frac{520 k \Omega+(30.3 M \Omega \| 5.72 M \Omega)}{[1+(30.3 M \Omega \| 5.72 M \Omega) \times 190.4 \mu A / V ]} \\&=5.81 k \Omega\end{aligned}

 

From Eq. (9.123),

R_{3}=r_{\pi 1}\left\|r_{\pi 3}\right\| \frac{1}{g_{ m 3}} \| r_{ o 3} \approx \frac{1}{g_{ m 3}}                              (9.123)

 

R_{3}=525 k \|525 k \| 5.25 k \| 30 M \approx 5.15 k \Omega

 

From Eq. (9.126),

R_{ o } \approx r_{ o 2}\left[1+\frac{g_{ m 2} r_{\pi 2}}{R_{ e }^{\prime}}\left(R_{3} \| R_{ e }^{\prime}\right)\right]                                    (9.126)

 

R_{ o }=(30 M )\left[1+\frac{192.3 \mu \times 520 k }{5.81 k } \times 5.15 k \| 5.81 k \right]=1.44 G \Omega

 

and      V_{\text {Th }}=1.44 G \times 5 \mu=7.2 kV

 

NOTE: If we use Eq. (9.127),

\begin{aligned}R_{ o } & \approx r_{ o 2}\left(1+\frac{g_{ m 2} r_{\pi 2}}{2}\right) \\& \approx r_{ o 2}\left(1+\frac{\beta_{ F }}{2}\right)\end{aligned}                            (9.127)

 

R_{ o } \approx(30 M )\left(1+\frac{100}{2}\right)=1.53 G \Omega

 

(c) The Wilson current source for PSpice simulation is shown in Fig. 9.31. We will use parametric sweep for the model parameter βF of the transistors. The voltage source V_{ y } acts as an ammeter for the output current.

The results of simulation (.TF analysis) are as follows. (The hand calculations are shown in parentheses.)

For \beta_{ F }=100, the simulation gives

VOLTAGE SOURCE CURRENTS

NAME                     CURRENT
VCC                         -5.022E-06

\begin{array}{lll}VX & 5.022 E -06 & \left(I_{ R }=5 \mu A \right) \\VY & 5.006 E -06 & \left(I_{ R }=5 \mu A \right) \\VCE & -5.006 E -06 &\end{array}

**** BIPOLAR JUNCTION TRANSISTORS

\begin{array}{lllll}\text { NAME } & \text { Q1 } & \text { Q2 } & \text { Q3 } & \\\text { IB } & 4.95 E -08 & 4.73 E -08 & 4.95 E -08 & \\\text { IC } & 4.98 E -06 & 5.01 E -06 & 4.95 E -06 & \\\text { VBE } & 6.37 E -01 & 6.36 E -01 & 6.37 E -01 & \\\text { VBC } & -6.36 E -01 & -8.73 E +00 & 0.00 E +00 & \\\text { VCE } & 1.27 E +00 & 9.36 E +00 & 6.37 E -01 & \\\text { BETADC } & 1.00 E +02 & 1.06 E +02 & 1.00 E +02 & \\\text { GM } & 1.92 E -04 & 1.94 E -04 & 1.92 E -04 & \\\text { RPI } & 5.22 E +05 & 5.47 E +05 & 5.22 E +05 & \left(r_{\pi 1}=525 k \Omega, r_{\pi 2}=520 k \Omega, r_{\pi 3}=525 k \Omega\right) \\\text { RO } & 3.03 E +07 & 3.17 E +07 & 3.03 E +07 & \left(r_{ ol }=30.3 M \Omega, r_{ o 2}=30 M \Omega, r_{ o 3}=30.3 M \Omega\right)\end{array}

**** SMALL-SIGNAL CHARACTERISTICS

\begin{array}{ll}\text { I (VY) /VCC=1.739E-07 } & \\\text { INPUT RESISTANCE AT VCC=5.730E+06 } & \left(R_{1}=5.72 M \Omega\right) \\\text { OUTPUT RESISTANCE AT I }(V Y)=1.602 E +09 & \left(R_{ o }=1.44 G \Omega\right)\end{array}

 

For \beta_{ F }=400, the simulation gives

\begin{aligned}&\text { I }(V Y) / V C C=1.738 E -07 \\&\text { INPUT RESISTANCE AT VCC=5.730E+06 } \\&\text { OUTPUT RESISTANCE AT I(VY)=5.441E+09 } \quad\left(R_{ O }=6.03 G \Omega\right)\end{aligned}

 

NOTE: R_{ o } changes from 1.602 E +09 \Omega\left(\text { for } \beta_{ F }=100\right) \text { to } 5.441 E +09 \Omega\left(\text { for } \beta_{ F }=400 \Omega\right) and depends on \beta_{ F } , as expected.

image_2021-11-06_175326

Related Answered Questions