(a) The fraction of emitted radiation energy in a band \lambda_{1}T to \lambda_{2}T is found from the fraction in band 0-\lambda_{1}T and 0-\lambda_{2}T from F_{\lambda _{1}T-\lambda _{2}T}=\frac{\int_{\lambda _{1}}^{\lambda _{2}}{E_{b,\lambda }(T,\lambda )d\lambda } }{\sigma _{SB}T^{4}}= F_{0-\lambda _{2}T}-F_{0-\lambda _{1}T} , i.e.,
F_{\lambda _{1}T-\lambda _{2}T}= F_{0-\lambda _{2}T}-F_{0-\lambda _{1}T}
(b) The energy emitted is then found from F_{\lambda _{1}T-\lambda _{2}T}=\frac{\int_{\lambda _{1}}^{\lambda _{2}}{E_{b,\lambda }(T,\lambda )d\lambda } }{\sigma _{SB}T^{4}}= F_{0-\lambda _{2}T}-F_{0-\lambda _{1}T} , i.e.,
\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }(T,\lambda )d\lambda } =F_{\lambda _{1}T-\lambda _{2}T}\sigma _{SB}T^{4}
(i) For T = 500 K, we have
\lambda _{1}T=0.39(\mu m)\times 500(k)=195\mu m-K
\lambda_{2}T = 0.77(\mu m) × 500(K) = 385 \mu m-K
F_{0-\lambda_{1}T} \simeq 0, F_{0-\lambda_{2}T} \simeq 0 Table
F_{\lambda_{1}T -\lambda_{2}T} = F_{0-\lambda_{2}T} − F_{0-\lambda_{1}T} = 0 − 0 = 0,
\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }d\lambda } =(F_{\lambda _{1}T-\lambda _{2}T})\sigma _{SB}T^{4}=0\times 5.67\times 10^{-8}(W/m^{2}-K^{4})\times 500^{4}(K^{4})=0W/m^{2}
F_{0-\lambda T}(\lambda T)=\frac{15}{\pi ^{4}}\sum\limits_{i=1}^{4}{\frac{e^{-ix}}{i} }\left(x^{3}+\frac{3x^{2}}{i}+\frac{6x}{i^{2}}+\frac{6}{i^{3}} \right) curve fit for band fraction of total blackbody emissive power,
where x = 14,338 (\mu m-K)/\lambda T
(ii) For T = 1,500 K, we have
\lambda _{1}T=0.39(\mu m)\times 1,500(k)=585\mu m-K
\lambda_{2}T = 0.77(\mu m) × 1,500(K) = 1,155 \mu m-K
F_{0-\lambda_{1}T} \simeq 0 , F_{0-\lambda_{2}T} = 0.00321 Table
F_{\lambda_{1}T -\lambda_{2}T} = F_{0-\lambda_{2}T} − F_{0-\lambda_{1}T} = 0.00321 − 0 = 0.00321,
\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }d\lambda } =0.00321\times 5.67\times 10^{-8}(W/m^{2}-K^{4})\times 1,500^{4}(K^{4})=9.214\times 10^{2}W/m^{2}
(iii) For T = 2,500 K, we have
\lambda _{1}T=0.39(\mu m)\times 2,500(k)=975\mu m-K
\lambda_{2}T = 0.77(\mu m) × 2,500(K) = 1,925 \mu m-K
F_{0-\lambda_{1}T} = 0.000312 , F_{0-\lambda_{2}T} = 0.0565 Table
F_{\lambda_{1}T -\lambda_{2}T} = F_{0-\lambda_{2}T} − F_{0-\lambda_{1}T} = 0.0562,
\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }d\lambda } =0.0561\times 5.67\times 10^{-8}(W/m^{2}-K^{4})\times 2,500^{4}(K^{4})=1.251\times 10^{5}W/m^{2}
(iv) For T = 3,500 K, we have
\lambda _{1}T=0.39(\mu m)\times 3,500(k)=1,365\mu m-K
\lambda_{2}T = 0.77(\mu m) × 3,500(K) = 2,695 \mu m-K
F_{0-\lambda_{1}T} = 0.00714 , F_{0-\lambda_{2}T} = 0.204 Table
F_{\lambda_{1}T -\lambda_{2}T} = F_{0-\lambda_{2}T} − F_{0-\lambda_{1}T} = 0.197,
\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }d\lambda } =0.197\times 5.67\times 10^{-8}(W/m^{2}-K^{4})\times 3,500^{4}(K^{4})=1.676\times 10^{8}W/m^{2}