Question 4.1: Determine (a) the band fraction of emitted radiation energy,...

Determine (a) the band fraction of emitted radiation energy, and (b) the blackbody radiation energy emitted, which are in the visible range (0.39 ≤ \lambda ≤ 0.77 \mu m), when a thin tungsten wire (i.e., a filament) is heated to (i) T = 500 K, (ii) T = 1,500 K, (iii) T = 2,500 K, and (iv) T = 3,500 K. (The melting temperature of tungsten is T_{sl} = 3,698 K .)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The fraction of emitted radiation energy in a band \lambda_{1}T to \lambda_{2}T is found from the fraction in band 0-\lambda_{1}T and 0-\lambda_{2}T from F_{\lambda _{1}T-\lambda _{2}T}=\frac{\int_{\lambda _{1}}^{\lambda _{2}}{E_{b,\lambda }(T,\lambda )d\lambda } }{\sigma _{SB}T^{4}}= F_{0-\lambda _{2}T}-F_{0-\lambda _{1}T} , i.e.,

F_{\lambda _{1}T-\lambda _{2}T}= F_{0-\lambda _{2}T}-F_{0-\lambda _{1}T}

(b) The energy emitted is then found from F_{\lambda _{1}T-\lambda _{2}T}=\frac{\int_{\lambda _{1}}^{\lambda _{2}}{E_{b,\lambda }(T,\lambda )d\lambda } }{\sigma _{SB}T^{4}}= F_{0-\lambda _{2}T}-F_{0-\lambda _{1}T} , i.e.,

\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }(T,\lambda )d\lambda } =F_{\lambda _{1}T-\lambda _{2}T}\sigma _{SB}T^{4}

(i) For T = 500 K, we have

\lambda _{1}T=0.39(\mu m)\times 500(k)=195\mu m-K 

 

\lambda_{2}T = 0.77(\mu m) × 500(K) = 385 \mu m-K

F_{0-\lambda_{1}T} \simeq  0,  F_{0-\lambda_{2}T} \simeq 0  Table
F_{\lambda_{1}T -\lambda_{2}T} = F_{0-\lambda_{2}T} − F_{0-\lambda_{1}T} = 0 − 0 = 0,

 

\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }d\lambda } =(F_{\lambda _{1}T-\lambda _{2}T})\sigma _{SB}T^{4}=0\times 5.67\times 10^{-8}(W/m^{2}-K^{4})\times 500^{4}(K^{4})=0W/m^{2}

F_{0-\lambda T}(\lambda T)=\frac{15}{\pi ^{4}}\sum\limits_{i=1}^{4}{\frac{e^{-ix}}{i} }\left(x^{3}+\frac{3x^{2}}{i}+\frac{6x}{i^{2}}+\frac{6}{i^{3}} \right)  curve fit for band fraction of total blackbody emissive power,

where x = 14,338 (\mu m-K)/\lambda T

(ii) For T = 1,500 K, we have

\lambda _{1}T=0.39(\mu m)\times 1,500(k)=585\mu m-K 

 

\lambda_{2}T = 0.77(\mu m) × 1,500(K) = 1,155 \mu m-K

F_{0-\lambda_{1}T} \simeq  0 ,  F_{0-\lambda_{2}T} = 0.00321   Table
F_{\lambda_{1}T -\lambda_{2}T} = F_{0-\lambda_{2}T} − F_{0-\lambda_{1}T} = 0.00321 − 0 = 0.00321,

 

\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }d\lambda } =0.00321\times 5.67\times 10^{-8}(W/m^{2}-K^{4})\times 1,500^{4}(K^{4})=9.214\times 10^{2}W/m^{2}

(iii) For T = 2,500 K, we have

\lambda _{1}T=0.39(\mu m)\times 2,500(k)=975\mu m-K 

 

\lambda_{2}T = 0.77(\mu m) × 2,500(K) = 1,925 \mu m-K

F_{0-\lambda_{1}T} =  0.000312 ,  F_{0-\lambda_{2}T} = 0.0565   Table
F_{\lambda_{1}T -\lambda_{2}T} = F_{0-\lambda_{2}T} − F_{0-\lambda_{1}T}  = 0.0562,

 

\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }d\lambda } =0.0561\times 5.67\times 10^{-8}(W/m^{2}-K^{4})\times 2,500^{4}(K^{4})=1.251\times 10^{5}W/m^{2}

(iv) For T = 3,500 K, we have

\lambda _{1}T=0.39(\mu m)\times 3,500(k)=1,365\mu m-K 

 

\lambda_{2}T = 0.77(\mu m) × 3,500(K) = 2,695 \mu m-K

F_{0-\lambda_{1}T} =  0.00714 ,  F_{0-\lambda_{2}T} = 0.204   Table
F_{\lambda_{1}T -\lambda_{2}T} = F_{0-\lambda_{2}T} − F_{0-\lambda_{1}T}  = 0.197,

 

\int_{\lambda _{1}T}^{\lambda _{2}T}{E_{b,\lambda }d\lambda } =0.197\times 5.67\times 10^{-8}(W/m^{2}-K^{4})\times 3,500^{4}(K^{4})=1.676\times 10^{8}W/m^{2}
Capture

Related Answered Questions