Question 6.4: Determine the [ABD] and [abd] matrices for a [30/0/90]T grap...

Determine the [ABD] and [abd] matrices for a [30/0/90]_T graphite–epoxy laminate. Use material properties listed for graphite–epoxy in Table 3.1, and assume each ply has a thickness of 0.125 mm.

TABLE 3.1
Typical Properties of Common Unidirectional Composites

Property Glass/ Epoxy Kevlar/ Epoxy Graphite/ Epoxy
E_{11} 55 GPa 100 GPa 170 GPa
(8.0 Msi) (15 Msi) (25 Msi)
E_{22} 16 GPa 6 GPa 10 GPa
(2.3 Msi) (0.90 Msi) (1.5 Msi)
ν_{12} 0.28 0.33 0.3
G_{12} 7.6 GPa 2.1 GPa 13 GPa
(1.1 Msi) (0.30 Msi) (1.9 Msi)
 \sigma _{11}^{fT} 1050 MPa 1380 MPa 1500 MPa
(150 ksi) (200 ksi) (218 ksi)
\sigma _{11}^{fC} 690 MPa 280 MPa 1200 MPa
(100 ksi) (40 ksi) (175 ksi)
\sigma _{22}^{fT} 45 MPa 35 MPa 50 MPa
(5.8 ksi) (2.9 ksi) (7.25 ksi)
\sigma _{22}^{fC} 120 MPa 105 MPa 100 MPa
(16 ksi) (15 ksi) (14.5 ksi)
\tau ^f_{22} 40 MPa 40 MPa 90 MPa
(4.4 ksi) (4.0 ksi) (13.1 ksi)
\alpha _{11} 6.7 μm/m−°C −3.6 μm/m−°C −0.9 μm/m−°C
(3.7 μin./in.\boxtimes  °F) (−2.0 μin./in.−°F) (−0.5 μin./in.−°F)
\alpha _{22} 25 μm/m−°C 58 μm/m−°C 27 μm/m−°C
(14 μin./in.−°F) (32 μin./in.−°F) (15 μin./in.−°F)
\beta _{11} 100 μm/m−%M 175 μm/m−%M 50 μm/m−%M
(100 μin./in.−%M) (175 μin./in.−%M) (50 μin./in.−%M)
\beta _{22} 1200 μm/m−%M 1700 μm/m−%M 1200 μm/m−%M
(1200 μin./in.−%M) (1700 μin./in.−%M) (1200 μin./in.−%M)
Ply 0.125 mm 0.125 mm 0.125 mm
Thickness (0.005 in.) (0.005 in.) (0.005 in.)
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

An edge view of the laminate is shown in Figure 6.17. The total laminate thickness t = 3(0.125 mm) = 0.375 mm. Since all three plies are of the same material, the thickness of each ply is identical: t_1 = t_2 = t_3 = 0.125 mm. Note that since an odd number of plies are used, the origin of the x−y−z coordinate system exists at the midplane of ply 2. The ply interface coordinates can be calculated as

z_0 = −t/2 = −(0.375 mm)/2 = −0.1875 mm = −0.0001875 m

 

z_1 = z_0 + t_1 = −0.1875 mm + 0.125 mm = −0.0625 mm = −0.0000625 m

 

z_2 = z_1 + t_2 = −0.0625 mm + 0.125 mm = 0.0625 mm = 0.0000625 m

 

z_3 = z_2 + t_3 = 0.0625 mm + 0.125 mm = 0.1875 mm = 0.0001875 m

 

We will also require the transformed reduced stiffness matrix for each ply. Elements of the [\overline{Q} ]_k matrices are calculated using Equations 5.31* and are equal to

\overline{Q}_{11} = {Q}_{11}\cos ^4\theta +2(Q_{12}+2Q_{66}) \cos ^2\theta\sin ^2\theta+Q_{22}\sin ^4\theta \\[0.5cm] \overline{Q}_{12} = \overline{Q}_{21} ={Q}_{12}\left(\cos ^4\theta+\sin ^4\theta \right) + (Q_{11}+Q_{22}-2Q_{66}) \cos ^2\theta\sin ^2\theta \\[0.5cm] \overline{Q}_{16} = \overline{Q}_{61} = (Q_{11}-Q_{12}-2Q_{66}) \cos ^3 \theta\sin \theta – (Q_{22}-Q_{12}-2Q_{66}) \cos \theta \sin ^3 \theta \\[0.5cm] \overline{Q}_{22} = {Q}_{11}\sin ^4\theta +2(Q_{12}+2Q_{66}) \cos ^2\theta\sin ^2\theta + Q_{22}\cos ^4\theta \\[0.5cm] \overline{Q}_{26} = \overline{Q}_{62} = (Q_{11}-Q_{12}-2Q_{66}) \cos  \theta\sin ^3\theta – (Q_{22}-Q_{12}-2Q_{66}) \cos ^3 \theta \sin \theta \\[0.5cm] \overline{Q}_{66} = (Q_{11}+Q_{22}-2Q_{12}-2Q_{66}) \cos ^2 \theta\sin ^2 \theta + Q_{66}\left(\cos ^4\theta+\sin ^4\theta \right)                         (5.31)

For ply #1 (the 30° ply):

\left[\overline{Q} \right]_{30°ply}=\left [ \begin{matrix} \overline{Q}_{11} &\overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{matrix} \right ]= \left [ \begin{matrix} 107.6\times 10^9 &26.06\times 10^9 & 48.13\times 10^9 \\ 26.06\times 10^9 & 27.22\times 10^9 & 21.52\times 10^9 \\ 48.13\times 10^9 &21.52\times 10^9 & 36.05\times 10^9 \end{matrix} \right ](Pa)

 

For ply #2 (the 0° ply):

\left[\overline{Q} \right]_{0°ply}=\left [ \begin{matrix} \overline{Q}_{11} &\overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{matrix} \right ]= \left [ \begin{matrix} 170.9\times 10^9 & 3.016\times 10^9 & 0 \\ 3.016\times 10^9 & 10.05\times 10^9 & 0\\ 0 &0 & 13.00 \times 10^9 \end{matrix} \right ](Pa)

 

For ply #3 (the 90° ply):

\left[\overline{Q} \right]_{90°ply}=\left [ \begin{matrix} \overline{Q}_{11} &\overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{matrix} \right ]= \left [ \begin{matrix} 10.05\times 10^9 &3.016\times 10^9 & 0 \\ 3.016\times 10^9 & 170.9\times 10^9 & 0\\ 0 &0 & 13.00\times 10^9 \end{matrix} \right ](Pa)

 

We can now calculate each member of the A_{ij}, B_{ij}, and D_{ij} matrices, in accordance with Equations 6.27a, 6.27b, and 6.34, respectively.

A_{ij}=\sum\limits_{k=1}^{n}{\left\{\overline{Q}_{ij} \right\}_k(z_k -z_{k-1}) }                   (6.27a)

 

B_{ij}=\frac{1}{2} \sum\limits_{k=1}^{n}{\left\{\overline{Q}_{ij} \right\}_k(z_k^2 -z_{k-1}^2) }                                            (6.27b)

 

D_{ij}=\frac{1}{3} \sum\limits_{k=1}^{n}{\left\{\overline{Q}_{ij} \right\}_k(z_k^3 -z_{k-1}^3) }                                            (6.34)

• Using Equation 6.27a, element A_{11} is calculated as follows:

A_{11}= \sum\limits_{k=1}^{3}{\left\{\overline{Q}_{11} \right\}_k(z_k -z_{k-1}) }

 

A_{11}=\left\{\overline{Q}_{11} \right\}_1(z_1 -z_0)+\left\{\overline{Q}_{11} \right\}_2(z_2 -z_1) +\left\{\overline{Q}_{11} \right\}_3 (z_3 – z_2)

 

A_{11}=\left\{107.6\times 10^9 \right\}(-0.000625 + 0.0001875) \\ +\left\{170.6\times 10^9 \right\}(0.0000625 + 0.0000625) \\ +\left\{10.05\times 10^9 \right\} (0.0001875-0.0000625)

 

A_{11} =36.07 \times 10^9 Pa–m

 

The remaining elements of the A_{ij} matrix are found in similar fashion:

A_{ij}=\left [ \begin{matrix} 36.07 & 4.012 & 6.016 \\ 4.012 & 26.02 & 2.690 \\ 6.016 & 2.690 & 7.756 \end{matrix} \right ]\times 10^6(Pa−m)

• Using Equations 6.27b, element B_{11} is calculated as follows:

B_{11}= \frac{1}{2}\sum\limits_{k=1}^{3}{\left\{\overline{Q}_{11}\right\}_k(z_k^2 – z_{k -1}^2) }

 

B_{11}=\frac{1}{2}\left[\left\{\overline{Q}_{11} \right\}_1(z_1^2 -z_0^2)+\left\{\overline{Q}_{11} \right\}_2(z_2^2 -z_1^2)\left\{\overline{Q}_{11} \right\}_3(z_3^2 -z_2^2) \right]

 

B_{11}=\frac{1}{2} \left[\left\{107.6\times 10^9\right\}\left\{(-0.0000625)^2 – (-0.0001875)^2\right\} \\ +\left\{170.9\times 10^9\right\}\left\{(0.0000625)^2-(-0.0000625)^2\right\} \\ +\left\{10.05\times 10^9\right\}\left\{(0.0001875)^2 – (0.0000625)^2\right\} \right]

 

B_{11}=-1.524\times 10^3 Pa − m^2

The remaining elements of the B_{ij} matrix are found in similar fashion:

B_{ij}=\left [ \begin{matrix} -1.524 & -0.3601 & -0.7521 \\ -0.3601 & 2.245 & -0.3362 \\ -0.7521 & -0.3362 & -0.3601\end{matrix} \right ]\times 10^3(Pa−m^2)

In passing, in this example, it appears that B_{12} is numerically equal to B_{66}. This is not true, in general. In this problem the apparent numerical equivalence is due to the fact that only 4 significant digits have been listed. Nevertheless, for laminates produced using a single material system it is often (but not always) the case that B_{12} ≈ B_{66}. This common occurrence can be traced to the fact the functional form and magnitude of \overline{Q}_{12} and \overline{Q}_{66} are similar (see Equations 5.31). Since B_{12} and B_{66}are directly related to \overline{Q}_{12} and \overline{Q}_{12} , respectively, their values are often nearly identical. Also, in the next section it will be seen that all elements within the B_{ij} matrix are zero for symmetric laminates. Hence, for symmetric laminates these two terms are, in fact, numerically equal, that is, B_{12} = B_{66} = 0 for symmetric laminates.

• Using Equations 6.34, element D_{11} is calculated as follows:

D_{11}=\frac{1}{3} \sum\limits_{k=1}^{3}{\left\{\overline{Q}_{11} \right\}_k(z_k^3 – z_{k-1}^3) }

 

D_{11}=\frac{1}{3}\left[\left\{\overline{Q}_{11} \right\}_1(z_1^3 -z_0^3)+\left\{\overline{Q}_{11} \right\}_2(z_2^3 -z_1^3)\left\{\overline{Q}_{11} \right\}_3(z_3^3 -z_2^3) \right]

 

D_{11}=\frac{1}{3}\left[\left\{107.6\times 10^9 \right\}\left\{(-0.0000625)^3-(-0.0001875)^3 \right\} \\ +\left\{170.9\times 10^9\right\} \left\{(0.0000625)^3 -(-0.0000625)^3\right\} \\ + \left\{10.05\times 10^9 \right\}\left\{(0.0001875)^3 -(0.0000625)^3\right\} \right]

 

D_{11}=0.2767 Pa–m^3

The remaining elements of the D_{ij} matrix are found in similar fashion:

D_{ij}=\left [ \begin{matrix} 0.2767 &0.0620 & 0.1018 \\ 0.0620 & 0.4208 & 0.0455 \\ 0.1018 & 0.0455 & 0.1059 \end{matrix} \right ](Pa − m^3)

The [ABD] matrix can now be assembled:

[ABD]=\left [ \begin{matrix} 36.07\times 10^6 & 4.012\times 10^6 & 6.0164\times 10^6 & −1524 & −360.1 & −752.1 \\ 4.012 \times 10^6& 26.02\times 10^6 & 2.690\times 10^6 & -360.1 & 2245 & -336.2 \\ 6.016\times 10^6 & 2.690\times 10^6 & 7.756\times 10^6 & -752.1 & -336.2 & -360.1 \\ -1524 & -360.1 & -7521 & 0.2767 &0.0620 & 0.1018 \\ -360.1 & 2245 & -3362 & 0.0620 & 0.4208 & 0.0455 \\ -752.1 & -336.2 & -360.1 &0.1018 & 0.0455& 0.1059 \end{matrix} \right ]

The [abd] matrix is obtained by inverting the [ABD] matrix, and is found to be

[abd]=\left [ \begin{matrix} 3.757\times 10^{-8} &-1.964\times 10^{-9} & -1.038\times 10^{-8} & 1.440\times 10^{-4} & 3.905\times 10^{-6} & 8.513\times 10^{-6} \\ -1.964\times 10^{-9} & 1.037\times 10^{-7} & -4.234\times 10^{-8}& -1.866\times 10^{-5} & -6.361\times 10^{-4} & 4.6288\times 10^{4} \\ -1.038 \times 10^{-5} & -4.234\times 10^{-4} & 2.004\times 10^{-7} &3.661\times 10^{-4} & 3.251\times 10^{-4} & -1.851\times 10^{-5} \\ 1.440\times 10^{-4} & -1.866\times 10^{-5} & 3661\times 10^{-4} & 7.064 & -3.122\times 10^{-2} & -4.572 \\ 3.905\times 10^{-6} & -6.361\times 10^{-4} & 3.251\times 10^{-4} & -3.122\times 10^{-2} & 6.429 & -3.620 \\ 8.513\times 10^{-5} & 4.628\times 10^4 & -1.851\times 10^{-5} & -4.572 & -3.620 & 17.41 \end{matrix} \right ]

^\ast [\overline{Q} ] matrix  for a 30°graphite–epoxy ply was calculated as a part of Example Problem 5.6.

بدون عنوان

Related Answered Questions