Question 6.12: Determine the capacitance of each of the capacitors in Figur...

Determine the capacitance of each of the capacitors in Figure 6.20. Take εr1=4, εr2=6, d=5 mm, S=30 cm2\varepsilon_{r1}=4,  \varepsilon_{r2}=6,  d=5  mm,  S=30  cm^{2}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since D and E are normal to the dielectric interface, the capacitor in Figure 6.20(a) can be treated as consisting of two capacitors C1C_{1} and C2C_{2} in series as in Figure 6.16(a).

C1=εoεr1Sd/2=2εoεr1Sd,    C2=2εoεr2SdC_{1}=\frac{\varepsilon _{o}\varepsilon _{r1}S}{d/2}=\frac{2\varepsilon_{o}\varepsilon_{r1}S}{d},       C_{2}=\frac{2\varepsilon_{o}\varepsilon_{r2}S}{d}

The total capacitor C is given by

C=C1C2C1+C2=2εoSd(εr1εr2)εr1+εr2C=\frac{C_{1}C_{2}}{C_{1}+C_{2}}=\frac{2\varepsilon_{o}S}{d}\frac{(\varepsilon_{r1}\varepsilon_{r2})}{\varepsilon_{r1}+\varepsilon_{r2}}

=210936π30×1045×1034×610                                         (6.12.1)=2\cdot\frac{10^{-9}}{36\pi}\cdot\frac{30\times10^{-4}}{5\times10^{-3}}\cdot\frac{4\times6}{10}                                                                                  (6.12.1)

C=25.46pFC=25.46 pF

(b) In this case, D and E are parallel to the dielectric interface. We may treat the capacitor as consisting of two capacitors C1C_{1} and C2C_{2} in parallel (the same voltage across C1C_{1} and C2C_{2}) as in Figure 6.16(b).

C1=εoεr1S/2d=εoεr1S2d,    C2=εoεr2S2dC_{1}=\frac{\varepsilon _{o}\varepsilon _{r1}S/2}{d}=\frac{\varepsilon_{o}\varepsilon_{r1}S}{2d},       C_{2}=\frac{\varepsilon_{o}\varepsilon_{r2}S}{2d}

The total capacitance is

C=C1+C2=εoS2d(εr1+εr2)C=C_{1}+C_{2}=\frac{\varepsilon_{o}S}{2d}(\varepsilon_{r1}+\varepsilon_{r2})

=10936π30×1042(5×103)10                                       (6.12.2)=\frac{10^{-9}}{36\pi}\cdot\frac{30\times10^{-4}}{2\cdot(5\times10^{-3})}\cdot10                                                                               (6.12.2)

C=26.53pFC=26.53 pF

Notice that when εr1=εr2=εr\varepsilon_{r1}=\varepsilon_{r2}=\varepsilon_{r}, eqs. (6.12.1) and (6.12.2) agree with eq. (6.22)

C=QV=εSdC=\frac{Q}{V}=\frac{\varepsilon S}{d}

as expected.

لقطة الشاشة 2021-06-23 042305
لقطة الشاشة 2021-06-23 042328

Related Answered Questions