Question 17.29: Determine the damped natural frequency of the system shown i...

Determine the damped natural frequency of the system shown in Fig.17.53.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The equation of motion is:

m l^{2} \ddot{\theta}+c b^{2} \dot{\theta}+m g l \theta+k a^{2} \theta=0 .

\ddot{\theta}+\left(\frac{c b^{2}}{m l^{2}}\right) \dot{\theta}+\left(\frac{m g l+k a^{2}}{m l^{2}}\right) \theta=0 .

Comparing with the standard equation of motion for the spring dashpot system, we have

\ddot{\theta}+2 \zeta \omega_{n} \dot{\theta}+\omega_{n}^{2} \ddot{\theta}=0 .

Natural frequency,            \omega_{n}=\sqrt{\frac{m g l+k a^{2}}{m l^{2}}} rad / s .

2 \zeta \omega_{n}=\frac{c b^{2}}{m l^{2}} .

Damping factor,      \zeta=\frac{c b^{2}}{2} \cdot \sqrt{\frac{1}{m l^{2}\left(m g l+k a^{2}\right)}} .

Damped natural frequency,    \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} .

\omega_{d}=\sqrt{\frac{m g l+k a^{2}}{m l^{2}}} \times \sqrt{1-\frac{c^{2} b^{4}}{4} \times \frac{1}{m l^{2}\left(m g l+k a^{2}\right)}} .

=\sqrt{\frac{m g l+k a^{2}}{m l^{2}}} \times \sqrt{\frac{4 m l^{2}\left(m g l+k a^{2}\right)-c^{2} b^{4}}{4 m l^{2}\left(m g l+k a^{2}\right)}} .

=\frac{1}{2 m l^{2}} \sqrt{4 m l^{2}\left(m g l+k a^{2}\right)-c^{2} b^{4}} .

=\sqrt{\frac{m g l+k a^{2}}{m l^{2}}}-\frac{c^{2} b^{4}}{4 m^{2} l^{4}} rad / s .

Related Answered Questions