Determine the depth of embedment for the sheet pile given in Fig. Example 20.7 using the design charts given in Section 20.7.
Given: H=5 m , h_{1}=2 m , h_{2}=3 m , h_{a}=1 m , h_{3}=4 m , \phi=30^{\circ}
Determine the depth of embedment for the sheet pile given in Fig. Example 20.7 using the design charts given in Section 20.7.
Given: H=5 m , h_{1}=2 m , h_{2}=3 m , h_{a}=1 m , h_{3}=4 m , \phi=30^{\circ}
From Fig. 20.18
For h_{a} / H=0.2, \text { and } \phi=30^{\circ} we have
G_{d}=0.26, G_{t}=0.084, G_{m}=0.024
From Fig. 20.19 for \phi=30, h_{a} / H=0.2 \text { and } h_{1} / H=0.4 we have
C_{d}=1.173, C_{t}=1.073, C_{m}=1.036
Now from Eq. (20.46 a)
D=G_{d} C_{d} H (20.46a)
D=G_{d} C_{d} H=0.26 \times 1.173 \times 5=1.52 m
D(\operatorname{design})=1.4 \times 1.52=2.13 m.
T_{a}=G_{t} C_{t} Y_{a} H^{2}
where \gamma_{a}=\frac{\left(\gamma_{m} h_{1}^{2}+\gamma_{b} h_{2}^{2}+2 \gamma_{m} h_{1} h_{2}\right)}{H^{2}}
=\frac{13 \times 2^{2}+8.19 \times 3^{2}+2 \times 13 \times 2 \times 3}{5^{2}}=11.27 kN / m ^{2}
Substituting and simplifying
T_{a}=0.084 \times 1.073 \times 11.27 \times 5^{2}=25.4 kN
M_{\max }=G_{m} C_{m} \gamma_{a} H^{3}
=0.024 \times 1.036 \times 11.27 \times 5^{3}=35.03 kN-m/m of wall
The values of D (design) and T_{a} from Ex. 20.7 are
D(\operatorname{design})=3.18 m
T_{a}=28.9 kN
The design chart gives less by 33% in the value of D (design) and 12% in the value of T_{a}.