Question 20.1: Determine the depth of embedment for the sheet-piling shown ...

Determine the depth of embedment for the sheet-piling shown in Fig. Ex. 20.la by rigorous analysis. Determine also the minimum section modulus. Assume an allowable flexural stress f_{b}=175 MN / m ^{2}. The soil has an effective unit weight of 17 kN / m ^{3} and angle of internal friction of 30°.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For \phi=30^{\circ}, K_{A}=\tan ^{2}\left(45^{\circ}-\phi / 2\right)=\tan ^{2} 30=\frac{1}{3}

 

K_{p}=\frac{1}{K_{A}}=3, K=K_{P}-K_{A}=3-\frac{1}{3}=2.67

 

The pressure distribution along the sheet pile is assumed as shown in Fig. Ex. 20.1(b)

 

\bar{p}_{a}=\gamma H K_{A}=17 \times 6 \times \frac{1}{3}=34 kN / m ^{2}

 

From Eq (20.1)

 

y_{0}=\frac{\gamma H K_{A}}{\gamma\left(K_{p}-K_{A}\right)}=\frac{\bar{p}_{a}}{\gamma K} (20.1)

 

\begin{aligned}&y_{0}=\frac{\bar{p}_{a}}{\gamma\left(K_{p}-K_{A}\right)}=\frac{34}{17 \times 2.67}=0.75 m. \\&P_{a}=\frac{1}{2} \bar{p}_{a} H+\frac{1}{2} \bar{p}_{a} y_{0}=\frac{1}{2} \times 34 \times 6+\frac{1}{2} \times 34 \times 0.75\end{aligned}

 

= 102 + 12.75 = 1 14.75 kN/meter length of wall or say 1 15 kN/m.

 

\begin{aligned}&\bar{p}_{p}=\gamma D\left(K_{p}-K_{A}\right)-\bar{p}_{a}=17 \times D \times 2.67-34=45.4 D-34 \\&\bar{p}_{p}^{\prime}=\gamma H K_{p}+\gamma D\left(K_{p}-K_{A}\right)=17 \times 6 \times 3+17 \times D \times 2.67=306+45.4 D \\&\bar{p}_{p}^{\prime \prime}=\gamma H K_{p}+\gamma_{0}\left(K_{p}-K_{A}\right)=17 \times 6 \times 3+17 \times 0.75 \times 2.67=340 kN / m ^{2}\end{aligned}

 

To find \bar{y}

 

\begin{aligned}&P_{a} \bar{y}=\frac{1}{2} \bar{p}_{a} H \quad \frac{H}{3}+y_{0} \quad+\frac{1}{2} \bar{p}_{a} y_{0} \quad \frac{2}{3} y_{0} \\&=\frac{1}{2} \times 34 \times 6 \times(2+0.75)+\frac{1}{2} \times 34 \times 0.75 \times \frac{2}{3} \times 0.75=286.9\end{aligned}

 

Now D_{0} can be found from Eq. (20.4), namely

 

D_{0}^{4}+C_{1} D_{0}^{3}+C_{2} D_{0}^{2}+C_{3} D_{0}+C_{4}=0 (20.4)

 

D_{0}^{4}+C_{1} D_{0}^{3}+C_{2} D_{0}^{2}+C_{3} D_{0}+C_{4}=0

 

\begin{aligned}&C_{1}=\frac{\bar{p}_{p}^{\prime \prime}}{\gamma K}=\frac{340}{17 \times 2.67}=7.49, \quad C_{2}=-\frac{8 P_{a}}{\gamma K}=-\frac{8 \times 115}{17 \times 2.67}=-20.3 \\&C_{3}=-\frac{6 P_{a}}{(\gamma K)^{2}}\left(2 \bar{y} \gamma K+\bar{p}_{p}^{\prime \prime}\right) \quad=-\frac{6 \times 115}{(17 \times 2.67)^{2}}(2 \times 2.50 \times 17 \times 2.67+340)=-189.9 \\&C_{4}=-\frac{6 P_{a} \bar{y} \bar{p}_{p}^{\prime \prime}+4 P_{a}^{2}}{(\gamma K)^{2}}=-\frac{6 \times 115 \times 2.50 \times 340+4 \times(115)^{2}}{(17 \times 2.67)^{2}}=-310.4\end{aligned}

 

Substituting for C_{1}, C_{2}, C_{3} \text { and } C_{4}, and simplifying we have

 

D_{0}^{4}+7.49 D_{0}^{3}-20.3 D_{0}^{2}-189.9 D_{0}-310.4=0

 

This equation when solved by the method of trial and error gives

 

D_{0} \approx 5.3 m

 

Depth of Embedment

 

D=D_{0}+y_{0}=5.3+0.75=6.05 m

 

Increasing D by 40%, we have’

 

D(\text { design })=1.4 \times 6.05=8.47 m \text { or say } 8.5 m .

 

(c) Section modulus

From Eq. (20.6) (The point of zero shear)

 

\bar{y}_{0}=\sqrt{\frac{2 P_{a}}{\gamma K}} (20.6)

 

\begin{aligned}&\bar{y}_{o}=\sqrt{\frac{2 P_{a}}{\gamma K}}=\sqrt{\frac{2 \times 115}{17 \times 2.67}}=2.25 m \\&M_{\max }=P_{a}\left(\bar{y}+\bar{y}_{o}\right)-\frac{1}{6} \bar{y}_{o}^{3} \gamma K \\&=115(2.50+2.25)-\frac{1}{6}(2.25)^{3} \times 17 \times 2.67 \\&=546.3-86.2=460 kN – m / m\end{aligned}

 

From Eq. (20.8)

 

Z _{s}=\frac{M_{\max }}{f_{b}} (20.8)

 

Section modulus

 

Z_{s}=\frac{M_{\max }}{f_{b}}=\frac{460}{175 \times 10^{3}}=26.25 \times 10^{-2} m ^{3} / m \text { of wall }

Related Answered Questions

Refer to Fig. Ex. 20.8 The following equations may...