Question 15.14: Determine the direct stress distribution in the thin-walled ...

Determine the direct stress distribution in the thin-walled Z section shown in Fig. 15.34, produced by a positive bending moment M_{x}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The section is antisymmetrical, with its centroid at the mid-point of the vertical web. Therefore, the direct stress distribution is given by either of Eq. (15.17) or (15.18), in which M_{y}=0. From Eq. (15.18),

 

\sigma_{z}=\left(\frac{M_{y} I_{x x}-M_{x} I_{x y}}{I_{x x} I_{y y}-I_{x y}^{2}}\right) x+\left(\frac{M_{x} I_{y y}-M_{y} I_{x y}}{I_{x x} I_{y y}-I_{x y}^{2}}\right) y  (15.17)

 

\sigma_{z}=\frac{M_{x}\left(I_{y y} y-I_{x y} x\right)}{I_{x x} I_{y y}-I_{x y}^{2}}+\frac{M_{y}\left(I_{x x} x-I_{x y} y\right)}{I_{x x} I_{y y}-I_{x y}^{2}}  (15.18)

 

\sigma_{z}=\frac{M_{x}\left(I_{y y} y-I_{x y} x\right)}{I_{x x} I_{y y}-I_{x y}^{2}}  (i)

 

The section properties are calculated as follows:

 

I_{x x}=2 \frac{h t}{2}\left(\frac{h}{2}\right)^{2}+\frac{t h^{3}}{12}=\frac{h^{3} t}{3}

 

I_{y y}=2 \frac{t}{3}\left(\frac{h}{2}\right)^{3}=\frac{h^{3} t}{12}

 

I_{x y}=\frac{h t}{2}\left(\frac{h}{4}\right)\left(\frac{h}{2}\right)+\frac{h t}{2}\left(-\frac{h}{4}\right)\left(-\frac{h}{2}\right)=\frac{h^{3} t}{8}

 

Substituting these values in Eq. (i),

 

\sigma_{z}=\frac{M_{x}}{h^{3} t}(6.86 y-10.30 x)  (ii)

 

On the top flange, y=h / 2,0 \leq x \leq h / 2 and the distribution of direct stress is given by

 

\sigma_{z}=\frac{M_{x}}{h^{3} t}(3.43 h-10.30 x)

 

which is linear. Hence,

 

\sigma_{z, 1}=-\frac{1.72 M_{x}}{h^{3} t} \quad(\text { compressive })

 

\sigma_{z, 2}=+\frac{3.43 M_{x}}{h^{3} t} \quad \text { (tensile) }

 

In the web, -h / 2 \leq y \leq h / 2 \text { and } x=0 Again, the distribution is of linear form and is given by the equation

 

\sigma_{z}=\frac{M_{x}}{h^{3} t} 6.86 y

 

from which

 

\sigma_{z, 2}=+\frac{3.43 M_{x}}{h^{3} t} \quad \text { (tensile) }

 

and

 

\sigma_{z, 3}=-\frac{3.43 M_{x}}{h^{3} t} \quad \text { (compressive) }

 

The distribution in the lower flange may be deduced from antisymmetry; the complete distribution is as shown in Fig. 15.35.

Capture

Related Answered Questions