Determine the direct stress distribution in the thin-walled Z section shown in Fig. 15.34, produced by a positive bending moment M_{x}.
Determine the direct stress distribution in the thin-walled Z section shown in Fig. 15.34, produced by a positive bending moment M_{x}.
The section is antisymmetrical, with its centroid at the mid-point of the vertical web. Therefore, the direct stress distribution is given by either of Eq. (15.17) or (15.18), in which M_{y}=0. From Eq. (15.18),
\sigma_{z}=\left(\frac{M_{y} I_{x x}-M_{x} I_{x y}}{I_{x x} I_{y y}-I_{x y}^{2}}\right) x+\left(\frac{M_{x} I_{y y}-M_{y} I_{x y}}{I_{x x} I_{y y}-I_{x y}^{2}}\right) y (15.17)
\sigma_{z}=\frac{M_{x}\left(I_{y y} y-I_{x y} x\right)}{I_{x x} I_{y y}-I_{x y}^{2}}+\frac{M_{y}\left(I_{x x} x-I_{x y} y\right)}{I_{x x} I_{y y}-I_{x y}^{2}} (15.18)
\sigma_{z}=\frac{M_{x}\left(I_{y y} y-I_{x y} x\right)}{I_{x x} I_{y y}-I_{x y}^{2}} (i)
The section properties are calculated as follows:
I_{x x}=2 \frac{h t}{2}\left(\frac{h}{2}\right)^{2}+\frac{t h^{3}}{12}=\frac{h^{3} t}{3}
I_{y y}=2 \frac{t}{3}\left(\frac{h}{2}\right)^{3}=\frac{h^{3} t}{12}
I_{x y}=\frac{h t}{2}\left(\frac{h}{4}\right)\left(\frac{h}{2}\right)+\frac{h t}{2}\left(-\frac{h}{4}\right)\left(-\frac{h}{2}\right)=\frac{h^{3} t}{8}
Substituting these values in Eq. (i),
\sigma_{z}=\frac{M_{x}}{h^{3} t}(6.86 y-10.30 x) (ii)
On the top flange, y=h / 2,0 \leq x \leq h / 2 and the distribution of direct stress is given by
\sigma_{z}=\frac{M_{x}}{h^{3} t}(3.43 h-10.30 x)
which is linear. Hence,
\sigma_{z, 1}=-\frac{1.72 M_{x}}{h^{3} t} \quad(\text { compressive })
\sigma_{z, 2}=+\frac{3.43 M_{x}}{h^{3} t} \quad \text { (tensile) }
In the web, -h / 2 \leq y \leq h / 2 \text { and } x=0 Again, the distribution is of linear form and is given by the equation
\sigma_{z}=\frac{M_{x}}{h^{3} t} 6.86 y
from which
\sigma_{z, 2}=+\frac{3.43 M_{x}}{h^{3} t} \quad \text { (tensile) }
and
\sigma_{z, 3}=-\frac{3.43 M_{x}}{h^{3} t} \quad \text { (compressive) }
The distribution in the lower flange may be deduced from antisymmetry; the complete distribution is as shown in Fig. 15.35.