Determine the horizontal and vertical components of the tip deflection of the cantilever shown in Fig. 15.24. The second moments of area of its unsymmetrical section are Ixx, Iyy, and Ixy.
Determine the horizontal and vertical components of the tip deflection of the cantilever shown in Fig. 15.24. The second moments of area of its unsymmetrical section are Ixx, Iyy, and Ixy.
From Eqs. (15.28),
\left\{\begin{array}{l}u^{\prime \prime} \\v^{\prime \prime}\end{array}\right\}=\frac{-1}{E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)}\left[\begin{array}{cc}-I_{x y} & I_{x x} \\I_{y y} & -_{xy}\end{array}\right]\left\{\begin{array}{l}M_{x} \\M_{y}\end{array}\right\} (15.28)
u^{\prime \prime}=\frac{M_{x} I_{x y}-M_{y} I_{x x}}{E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)} (i)
In this case, M_{x}=W(L- z ), M_{y}=0, so that Eq. (i) simplifies to
u^{\prime \prime}=\frac{W I_{x y}}{E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)}(L-z) (ii)
Integrating Eq. (ii) with respect to z,
u^{\prime}=\frac{W I_{x y}}{E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)}\left(L z-\frac{z^{2}}{2}+A\right) (iii)
and
u=\frac{W I_{x y}}{E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)}\left(L \frac{z^{2}}{2}-\frac{z^{3}}{6}+A z+B\right) (iv)
in which u^{\prime} denotes du/dz and the constants of integration A and B are found from the boundary conditions, namely, u^{\prime}=0 and u = 0 when z = 0. From the first of these and Eq. (iii), A = 0, while from the second and Eq. (iv), B = 0. Hence, the deflected shape of the beam in the xz plane is given by
u=\frac{W I_{x y}}{E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)}\left(L \frac{z^{2}}{2}-\frac{z^{3}}{6}\right) (v)
At the free end of the cantilever (z = L), the horizontal component of deflection is
u_{ f . e .}=\frac{W I_{x y} L^{3}}{3 E\left(I_{x y} I_{y y}-I_{x y}^{2}\right)} (vi)
Similarly, the vertical component of the deflection at the free end of the cantilever is
v_{ f . e .}=\frac{-W I_{y y} L^{3}}{3 E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)} (vii)
The actual deflection \delta_{\text {f.e. }} at the free end is then given by
\delta_{\text {f.e. }}=\left(u_{\text {f.e. }}^{2}+v_{\text {f.e. }}^{2}\right)^{\frac{1}{2}}
at an angle of \tan ^{-1} u_{\text {f.e. }} / v_{\text {f.e. }} to the vertical. Note that, if either Cx or Cy were an axis of symmetry, I_{x y}=0 and Eqs. (vi) and (vii) reduce to
u_{ f . e .}=0, \quad v_{ f . e .}=\frac{-W L^{3}}{3 E I_{x x}}
the well-known results for the bending of a cantilever having a symmetrical cross-section and carrying a concentrated vertical load at its free end (see Example 15.5).