Determine the location e of the shear center, point O, for the thin-walled member having the cross section shown. The member segments have the same thickness t.
Determine the location e of the shear center, point O, for the thin-walled member having the cross section shown. The member segments have the same thickness t.
Summing moments about A,
P e=F(4)+2 V_{1}(1.8) \text{(1)}
I=2\left[\frac{1}{12} t\left(4^{3}\right)\right]-\frac{1}{12} t\left(2^{3}\right)+2\left[(1.80)(t)\left(2^{2}\right)\right]=24.4 t \mathrm{in}^{4}
Q_{1}=\bar{y}_{1}^{\prime} A^{\prime}=\left(1+\frac{y}{2}\right)(y t)=t\left(y+\frac{y^{2}}{2}\right)
Q_{2}=\Sigma \bar{y}^{\prime} A^{\prime}=1.5(1)(t)+2(x)(t)=t(1.5+2 x)
q_{1}=\frac{V Q_{1}}{I}=\frac{P t\left(y+\frac{y^{2}}{2}\right)}{24.4 t}=\frac{P\left(y+\frac{y^{2}}{2}\right)}{24.4}
q_{2}=\frac{V Q_{2}}{I}=\frac{P t(1.5+2 x)}{24.4 t}=\frac{P(1.5+2 x)}{24.4}
V_{1}=\int q_{1} d y=\frac{P}{24.4} \int_{0}^{1}\left(y+\frac{y^{2}}{2}\right) d y=0.0273 P
F=\int q_{2} d y=\frac{P}{24.4} \int_{0}^{1.80}(1.5+2 x) d x=0.2434 P
From Eq.(1),
P e=0.2434 P(4)+2(0.0273) P(1.8)e=1.07 in.