Determine the location of the shear center O of a thin-walled beam of uniform thickness having the cross section shown in Figures P9.75.
Determine the location of the shear center O of a thin-walled beam of uniform thickness having the cross section shown in Figures P9.75.
Section Properties: For the arc
The moment of inertia for the complete cross section is:
I=I_{ arc }+2\left[r t(r)^{2}\right]=\frac{1}{2} \pi r^{3} t+2 r^{3} t=\frac{r^{3} t}{2}(\pi+4)Derive an expression for the value of Q for the upper horizontal portion in terms of a temporary variable u:
Q_{\text {upper }}=r(u \times t)=r^{2} t
For locations in the arc, Q can be expressed as:
where d Q=y d A=r \cos \theta(t r d \theta)=r^{2} t \cos \theta d \theta
Q_{ arc }=r^{2} t+r^{2} t \int_{0}^{\theta} \cos \theta d \theta=r^{2} t(1+\sin \theta)
Shear Flow Resultant (for the upper portion):
\begin{aligned}q_{\text {upper }} &=\frac{V Q_{u}}{I}=\frac{V r t}{\frac{r^{3} t}{2}(\pi+4)} u=\frac{2 V}{r^{2}(\pi+4)} u \\F_{\text {upper }} &=\int q_{\text {upper }} d u \\&=\int_{0}^{r} \frac{2 V}{r^{2}(\pi+4)} u d u=\frac{V}{\pi+4}\end{aligned}Shear Flow Resultant (for the arc):
\begin{aligned}q_{ arc } &=\frac{V Q_{ arc }}{I}=\frac{V r^{2} t(1+\sin \theta)}{\frac{r^{3} t}{2}(\pi+4)}=\frac{2 V}{r(\pi+4)}(1+\sin \theta) \\F_{ arc } &=\int q_{ arc } d s \\&=\int_{0}^{\pi} \frac{2 V}{r(\pi+4)}(1+\sin \theta) r d \theta \\&=\frac{2 V}{\pi+4} \int_{0}^{\pi}(1+\sin \theta) d \theta=\frac{2 V(\pi+2)}{\pi+4}\end{aligned}Shear Center: Sum moments about the center of the arc to find