Question 9.77: Determine the location of the shear center O of a thin-walle...

Determine the location of the shear center O of a thin-walled beam of uniform thickness having the cross section shown in Figures P9.77.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Moment of inertia about the neutral axis: Recognizing that the wall thickness is thin, the moment of inertia for the shape can be calculated as:

\begin{aligned}b &=\frac{6  mm }{\sin 30^{\circ}}=12  mm \\h &=35  mm \\|A B| &=\frac{35  mm }{\sin 30^{\circ}}=70  mm\end{aligned}

 

Shear Flow in Element AB: Derive an expression for Q for element AB as a function of a temporary variable s which originates at A and extends toward B.

Q_{A B}=\bar{y}^{\prime} A^{\prime}=\left(\frac{1}{2} s \sin 30^{\circ}\right)[(6  mm ) s]=(1.5  mm ) s^{2}

Express the shear flow q in element AB using Q_{A B}.

q_{A B}=\frac{V Q_{A B}}{I}=\left(\frac{V(1.5  mm )}{514,500  mm ^{4}}\right) s^{2}

Integrate with respect to the temporary variable s to determine the resultant force in element AB.

\begin{aligned}F_{A B} &=\int_{0}^{70  mm } q_{A B} d s \\&=\int_{0}^{70  mm }\left(\frac{V(1.5  mm )}{514,500  mm ^{4}}\right) s^{2} d s \\&=\frac{V(1.5  mm )}{514,500  mm ^{4}}\left[\frac{1}{3} s^{3}\right]_{0}^{70  mm }=0.3333333 V\end{aligned}

 

Shear Center: Sum moments about E to find

\begin{aligned}&V e=(70  mm ) F_{A B} \cos 30^{\circ} \\&e=\frac{(70  mm )(0.3333333 V) \cos 30^{\circ}}{V}=20.2  mm\end{aligned}

 

Related Answered Questions