Question 14.5.2: Determine the maximum useful shaft work that can be obtained...

Determine the maximum useful shaft work that can be obtained from n-octane, a model for gasoline, which is available at 25ºC and 1 bar. The octane is to be burned in air that contains nitrogen and oxygen in the mole ratio of 3.76 to 1, and that n-octane liquid at ambient conditions

[a] Use the approximate availability equation, and

[b] Use the exact availability equation.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The stoichiometry of the reaction is

 

C _{8} H _{18}+12.5 \times xO _{2}+12.5 \times 3.76 N _{2}=8 CO _{2}+9 H _{2} O +12.5 \times 3.76 N _{2}

 

[a]

Since n-octane is available at ambient conditions Eq. (14.5-7) at which it is a liquid, neglecting solution nonidealities and the RTlny term reduces to

 

W_{S, \max }=\sum_{\text {species i }} N_{2, i } \underline{G}_{ i }\left(T_{ amb }, P_{ amb }\right)-\sum_{\text {species i }} N_{1, i} B _{ i }\left(T_{1}, P_{1}\right) (14.5-7)

 

\begin{aligned}W_{S, \max }=& \sum_{\text {species i }} N_{2, i} \underline{G}_{ i }\left(25^{\circ} C , 1 bar \right)-\sum_{\text {species i }} N_{1, i } G_{ i }\left(25^{\circ} C , 1 bar \right) \\=& \sum_{\text {species i }} N_{2, i} \Delta \underline{G}_{ f , i }\left(25^{\circ} C , 1 bar \right)-\sum_{\text {species i }} N_{1, i } \Delta \underline{G}_{ f , i }\left(25^{\circ} C , 1 bar \right) \\=& 8 \Delta \underline{G}_{ f , CO _{2}}\left(25^{\circ} C , 1 bar \right)+9 \Delta \underline{G}_{ f , H _{2} O }\left(25^{\circ} C , 1 bar \right)-\Delta \underline{G}_{ f , C _{ H } H _{18}}\left(25^{\circ} C , 1 bar \right) \\&-2 \Delta \underline{G}_{ f , O _{2}}\left(25^{\circ} C , 1 bar \right) \\=&-8 \times 394.4-9 \times 228.6-(-16.3)=-4565.3 kJ / mol \text { octane }\end{aligned}

 

Thus, the maximum amount of shaft work that can be produced per mol of methane is 4565.3 kJ/mol octane.

[b] The stoichiometric table for the inlet conditions is, noting that n-octane is a liquid at ambient conditions,

 

Species Initial Number of Moles Mole fraction N_{ i } \ln y_{ i }
C _{8} H _{18} (1.0) 0 0
O _{2} 12.5 0.2101 −19.503
N _{2} 47 0.7899 −11.0843
H _{2} 0 0 0
CO _{2} 0 0 0
H _{2} O 0 0 0
Total 59.5 −30.587

 

The stoichiometric table for the outlet conditions is

 

Species Final Number of Moles Mole fraction N_{ i } \ln y_{ i }
C _{8} H _{18} 0 0 0
O _{2} 0 0 0
N _{2} 47 0.6144 −22.896
H _{2} 9 0.1177 −3.3278
CO _{2} 1.0 0.0947 −19.603
H _{2} O 9 0.1177 −19.261
Total 76.5 −83.608

 

Comments

So the maximum shaft work available is

 

\begin{aligned}W_{S, \max } &=-4565.26+R T_{ amb }(83.608-30.587) / 1000=\\&=-4565.26+8.314 \times 298.15 \times 53.021 / 1000=-4565.26+131.42 J / mol \\&=-4433.8 kJ / mol\end{aligned}

 

which is not insignificant, and the error in using the approximate equation is about 2.9% in this case.

Related Answered Questions