Question 17.2: Determine the natural frequency of free vibrations of the sy...

Determine the natural frequency of free vibrations of the system shown in Fig.17.10.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Force in spring 1,    F_{1}=\frac{W b}{a+b} .

Force in spring 2,    F_{2}=\frac{W a}{a+b} .

Deflection of spring 1,  x_{1}=\frac{F_{1}}{k_{1}}=\frac{W b}{k_{1}(a+b)} .

\text { Deflection of spring } 2, x_{2}=\frac{F_{2}}{k_{2}}=\frac{W a}{k_{2}(a+b)} .

\text { Deflection of point } c, \quad \delta=x_{1}+\left(\frac{a}{a+b}\right)\left(x_{2}-x_{1}\right) .

=\frac{W b}{k_{1}(a+b)}+\left(\frac{a}{a+b}\right)\left[\frac{W a}{k_{2}(a+b)}-\frac{W b}{k_{1}(a+b)}\right] .

=\frac{W b}{k_{1}(a+b)}+\frac{W a}{(a+b)^{2}}\left[\frac{a}{k_{2}}-\frac{b}{k_{1}}\right] .

=\frac{W}{(a+b)^{2}}\left[\frac{b(a+b)}{k_{1}}+\frac{a^{2}}{k_{2}}-\frac{a b}{k_{1}}\right] .

=\frac{W}{(a+b)^{2}}\left[\frac{\{b(a+b)-a b\} k_{2}+a^{2} k_{1}}{k_{1} k_{2}}\right] .

=\frac{W}{(a+b)^{2}}\left[\frac{b^{2}}{k_{1}}+\frac{a^{2}}{k_{2}}\right] .

\omega_{n}=\sqrt{\frac{g}{\delta}}=\sqrt{\frac{(a+b)^{2} k_{1} k_{2}}{m\left(a^{2} k_{1}+b^{2} k_{2}\right)}} rad / s .

Related Answered Questions