Determine the position of the shear center of the channel section beam of Example 24.13.
Determine the position of the shear center of the channel section beam of Example 24.13.
As in Example 16.2 the shear center lies on the horizontal axis of symmetry so that we only need to apply an arbitrary shear load, S_{Y}, through the shear center and calculate the shear flow distribution in, say, the bottom flange. In this case, S_{X}=0, I_{X X}^{\prime}=0 and Eq. (24.40) reduces to
N_{x}=\sum\limits_{ p =1}^{ N }\left[\begin{array}{lll}\bar{k}_{11}&\bar{k}_{12}&\bar{k}_{13}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x}\\\varepsilon_{y} \\\gamma_{x y}\end{array}\right\}\left(z_{ p }-z_{ p -1}\right) (24.40)
q_{s}=-E_{Z, i }\left(S_{Y} / I_{X X}^{\prime}\right) \int_{0}^{s} t_{ i } Y d s (i)
Referring to Fig. 24.17 and Example 24.13
I_{X X}^{\prime}=2 \times 60,000 \times 100 \times 2 \times 75^{2}+20,000\left(1.0 \times 150^{3} / 12\right)=14.1 \times 10^{10} N / mm ^{2}
On the bottom flange Y=-75 mm and t_{i}=2.0 mm so that Eq.(i) becomes
q_{s}=60,000\left(S_{Y} / 14.1 \times 10^{10}\right) \int_{0}^{s} 2 \times 75 ds
where s is measured from the free edge of the flange. Then
q_{s}=64 \times 10^{-5} S_{Y S} (ii)
Suppose that the shear center is a distance \xi_{ S } to the left of the vertical web. Then, taking moments about the midpoint of the web
S_{Y} \xi_{ S }=2 S_{Y} \int_{0}^{100} 6.4 \times 10^{-5} \times 75 s d s
which gives
\xi_{ S }=48.0 mm