Determine the power factor and the true powder in the circuit of Figure 15-59.
Determine the power factor and the true powder in the circuit of Figure 15-59.
The capacitive reactance is
X_{C}= \frac{1}{2\pi fC} = \frac{1}{2\pi (10 \ kHz)(0.0047 \ \mu F)}= 3.39 \ k\OmegaThe total impedance of the circuit in rectangular form is
Z = R — jX_{C} = 1.0 kΩ – j3.39 kΩ
Converting to polar form yields
Z =\sqrt{R^{2}+ X^{2}_{C}} \angle -\tan ^{-1} \left(\frac{X_{C}}{R} \right)\ \ \ \ \ = \sqrt{(1.0 \ k\Omega )^{2}+ (3.39 \ k\Omega )^{2}} \angle -\tan^{-1}\left(\frac{3.39 \ k\Omega}{1.0 \ k\Omega} \right)= 3.53 \angle -73.6° k\Omega
The angle associated with the impedance is θ, the angle between the applied voltage and the total current; therefore, the power factor is
PF= \cos \theta = \cos (-73.6°)= 0.282The current magnitude is
I=\frac{V_{s}}{Z}= \frac{15 \ V}{3.53 \ k\Omega }= 4.25 \ mAThe true power is
P_{true}= V_{s}I\cos \theta = (15 \ V)(4.25 \ mA)(0.282)= 18.0 \ mW