Question 8.6: Determine the time tf it takes for a cylindrical container w...

Determine the time t_{f} it takes for a cylindrical container with a small central hole to drain. Fundamental Balance Relations FIGURE 8.13 Fluid draining from a reservoir through a centrally located bottom hole.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Referring to Fig. 8.13, let us consider a streamline from the free surface, at 1, to the drain, at 2. Assuming an atmospheric pressure at 1 and 2, Bernoulli’s equation reduces to

                                                                 gh+\frac{1}{2}\nu ^{2}_{1}=\frac{1}{2}\nu ^{2}_{2},
or
                                                                  \nu ^{2}_{2}-\nu ^{2}_{1}=2gh(t),

where we emphasize that h varies with time t. Mass balance gives \nu _{1}A_{1}=\nu _{2}A_{2}; thus,

                                                \nu _{2}=\nu _{1}\frac{\pi D^{2}/4}{\pi d^{2}/4}=\nu _{1}\frac{D^{2}}{d^{2}}
and, therefore,
                                        \nu ^{2}_{1}\left(\frac{D^{4}}{d^{4}}-1 \right)=2gh(t)\rightarrow \nu _{1}=\sqrt{\frac{d^{4}2gh(t)}{D^{4}-d^{4}} }.

Now, we recognize that \nu _{1},=-dh/dt and, therefore,

                                                       \frac{1}{\sqrt{h(t)} }\left(-\frac{dh}{dt} \right)=\frac{d^{2}\sqrt{2g} }{\sqrt{D^{4}-d^{4}} }.

Integrating with respect to time,

                                                \int_{H}^{0}{\frac{1}{\sqrt{h} }\frac{dh}{dt} }dt=\int_{0}^{t_{f}}{\frac{-d^{2}\sqrt{2g} }{\sqrt{D^{4}-d^{4}} } }dt,
or
                                                      -2\sqrt{H}=\frac{-d^{2}\sqrt{2g} }{\sqrt{D^{4}-d^{4}} }t_{f};
thus,
                                         t_{f}=2\sqrt{\frac{H(D^{4}-d^{4})}{2gd^{4}} }=\sqrt{\frac{2H(D^{4}-d^{4})}{gd^{4}} }.

1

Related Answered Questions