E < V_0 : \psi=\left\{\begin{array}{ll} A e^{i k x}+B e^{-i k x} & (x<-a) \\ C e^{\kappa x}+D e^{-\kappa x} & (-a<x<a) \\ F e^{i k x} & (x>a) \end{array}\right\} \quad k=\frac{\sqrt{2 m E}}{\hbar} ; \kappa=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar} .
(1) Continuity of ψ at -a : A e^{-i k a}+B e^{i k a}=C e^{-\kappa a}+D e^{\kappa a} .
(2) Continuity of ψ′ at -a : i k\left(A e^{-i k a}-B e^{i k a}\right)=\kappa\left(C e^{-\kappa a}-D e^{\kappa a}\right) .
\Rightarrow 2 A e^{-i k a}=\left(1-i \frac{\kappa}{k}\right) C e^{-\kappa a}+\left(1+i \frac{\kappa}{k}\right) D e^{\kappa a} .
(3) Continuity of ψ at +a : C e^{\kappa a}+D e^{-\kappa a}=F e^{i k a} .
(4) Continuity of ψ′ at +a : \kappa\left(C e^{\kappa a}-D e^{-\kappa a}\right)=i k F e^{i k a} .
\Rightarrow 2 C e^{\kappa a}=\left(1+\frac{i k}{\kappa}\right) F e^{i k a} ; \quad 2 D e^{-\kappa a}=\left(1-\frac{i k}{\kappa}\right) F e^{i k a} .
2 A e^{-i k a}=\left(1-\frac{i \kappa}{k}\right)\left(1+\frac{i k}{\kappa}\right) F e^{i k a} \frac{e^{-2 \kappa a}}{2}+\left(1+\frac{i \kappa}{k}\right)\left(1-\frac{i k}{\kappa}\right) F e^{i k a} \frac{e^{2 \kappa a}}{2} .
=\frac{F e^{i k a}}{2}\left\{\left[1+i\left(\frac{k}{\kappa}-\frac{\kappa}{k}\right)+1\right] e^{-2 \kappa a}+\left[1+i\left(\frac{\kappa}{k}-\frac{k}{\kappa}\right)+1\right] e^{2 \kappa a}\right\} .
=\frac{F e^{i k a}}{2}\left[2\left(e^{-2 \kappa a}+e^{2 \kappa a}\right)+i \frac{\left(\kappa^{2}-k^{2}\right)}{k \kappa}\left(e^{2 \kappa a}-e^{-2 \kappa a}\right)\right] .
But \sinh x \equiv \frac{e^{x}-e^{-x}}{2}, \cosh x \equiv \frac{e^{x}+e^{-x}}{2} , so
=\frac{F e^{i k a}}{2}\left[4 \cosh (2 \kappa a)+i \frac{\left(\kappa^{2}-k^{2}\right)}{k \kappa} 2 \sinh (2 \kappa a)\right] .
=2 F e^{i k a}\left[\cosh (2 \kappa a)+i \frac{\left(\kappa^{2}-k^{2}\right)}{2 k \kappa} \sinh (2 \kappa a)\right] .
T^{-1}=\left|\frac{A}{F}\right|^{2}=\cosh ^{2}(2 \kappa a)+\frac{\left(\kappa^{2}-k^{2}\right)^{2}}{(2 \kappa k)^{2}} \sinh ^{2}(2 \kappa a) .
But \cosh ^{2}=1+\sinh ^{2} , so
T^{-1}=1+[\underbrace{1+\frac{\left(\kappa^{2}-k^{2}\right)^{2}}{(2 \kappa k)^{2}}}_{\star}] \sinh ^{2}(2 \kappa a)= 1+\frac{V_{0}^{2}}{4 E\left(V_{0}-E\right)} \sinh ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(V_{0}-E\right)}\right) .
where \star=\frac{4 \kappa^{2} k^{2}+k^{4}+\kappa^{4}-2 \kappa^{2} k^{2}}{(2 \kappa k)^{2}}=\frac{\left(\kappa^{2}+k^{2}\right)^{2}}{(2 \kappa k)^{2}}=\frac{\left(\frac{2 m E}{\hbar^{2}}+\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}\right)^{2}}{4 \frac{2 m E}{\hbar^{2}} \frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}=\frac{V_{0}^{2}}{4 E\left(V_{0}-E\right)} .
(You can also get this from Eq. 2.172 by switching the sign of V_0 and using \sin (i \theta)=i \sinh \theta ).
T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right) (2.172).
E = V_0 : \psi=\left\{\begin{array}{ll} A e^{i k x}+B e^{-i k x} & (x<-a) \\ C+D x & (-a<x<a) \\ F e^{i k x} & (x>a) \end{array}\right\} .
(In central region -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V_{0} \psi=E \psi \Rightarrow \frac{d^{2} \psi}{d x^{2}}=0, \text { so } \psi=C+D x .)
(1) Continuous ψ at -a : A e^{-i k a}+B e^{i k a}=C-D a .
(2) Continuous ψ at +a : F e^{i k a}=C+D a .
\Rightarrow(2.5) 2 D a=F e^{i k a}-A e^{-i k a}-B e^{i k a} .
(3) Continuous ψ′ at -a : i k\left(A e^{-i k a}-B e^{i k a}\right)=D .
(4) Continuous ψ′ at +a : i k F e^{i k a}=D .
\Rightarrow(4.5) A e^{-2 i k a}-B=F .
Use (4) to eliminate D in (2.5): A e^{-2 i k a}+B=F-2 a i k F=(1-2 i a k) F , and add to (4.5):
2 A e^{-2 i k a}=2 F(1-i k a), \text { so } T^{-1}=\left|\frac{A}{F}\right|^{2}=1+(k a)^{2} = 1+\frac{2 m E}{\hbar^{2}} a^{2} .
(You can also get this from Eq. 2.172 by changing the sign of V_0 and taking the limit E → V_0 using \sin \epsilon \cong \epsilon .
T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right) (2.172).
E > V_0 : This case is identical to the one in the book, only with V_{0} \rightarrow-V_{0} . So
T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E-V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E-V_{0}\right)}\right) .