Question 2.33: Determine the transmission coefficient for a rectangular bar...

Determine the transmission coefficient for a rectangular barrier (same as Equation 2.148, only with V(x) = + V_0 > 0 in the region -a < x < a). Treat separately the three cases E < V_0 , E = V_0 and E >V_0 . (note that the wave function inside the barrier is different in the three cases). Partial answer: for E < V_0 ,

V(x)= \begin{cases}-V_{0}, & -a \leq x \leq a \\ 0, & |x|>a\end{cases}     (2.148).

T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(V_{0}-E\right)} \sinh ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(V_{0}-E\right)}\right) .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

E < V_0 : \psi=\left\{\begin{array}{ll} A e^{i k x}+B e^{-i k x} & (x<-a) \\ C e^{\kappa x}+D e^{-\kappa x} & (-a<x<a) \\ F e^{i k x} & (x>a) \end{array}\right\} \quad k=\frac{\sqrt{2 m E}}{\hbar} ; \kappa=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar} .

(1) Continuity of ψ at -a : A e^{-i k a}+B e^{i k a}=C e^{-\kappa a}+D e^{\kappa a} .

(2) Continuity of ψ′ at -a : i k\left(A e^{-i k a}-B e^{i k a}\right)=\kappa\left(C e^{-\kappa a}-D e^{\kappa a}\right) .

\Rightarrow 2 A e^{-i k a}=\left(1-i \frac{\kappa}{k}\right) C e^{-\kappa a}+\left(1+i \frac{\kappa}{k}\right) D e^{\kappa a} .

(3) Continuity of ψ at +a : C e^{\kappa a}+D e^{-\kappa a}=F e^{i k a} .

(4) Continuity of ψ′ at +a : \kappa\left(C e^{\kappa a}-D e^{-\kappa a}\right)=i k F e^{i k a} .

\Rightarrow 2 C e^{\kappa a}=\left(1+\frac{i k}{\kappa}\right) F e^{i k a} ; \quad 2 D e^{-\kappa a}=\left(1-\frac{i k}{\kappa}\right) F e^{i k a} .

2 A e^{-i k a}=\left(1-\frac{i \kappa}{k}\right)\left(1+\frac{i k}{\kappa}\right) F e^{i k a} \frac{e^{-2 \kappa a}}{2}+\left(1+\frac{i \kappa}{k}\right)\left(1-\frac{i k}{\kappa}\right) F e^{i k a} \frac{e^{2 \kappa a}}{2} .

=\frac{F e^{i k a}}{2}\left\{\left[1+i\left(\frac{k}{\kappa}-\frac{\kappa}{k}\right)+1\right] e^{-2 \kappa a}+\left[1+i\left(\frac{\kappa}{k}-\frac{k}{\kappa}\right)+1\right] e^{2 \kappa a}\right\} .

=\frac{F e^{i k a}}{2}\left[2\left(e^{-2 \kappa a}+e^{2 \kappa a}\right)+i \frac{\left(\kappa^{2}-k^{2}\right)}{k \kappa}\left(e^{2 \kappa a}-e^{-2 \kappa a}\right)\right] .

But \sinh x \equiv \frac{e^{x}-e^{-x}}{2}, \cosh x \equiv \frac{e^{x}+e^{-x}}{2} , so

=\frac{F e^{i k a}}{2}\left[4 \cosh (2 \kappa a)+i \frac{\left(\kappa^{2}-k^{2}\right)}{k \kappa} 2 \sinh (2 \kappa a)\right] .

=2 F e^{i k a}\left[\cosh (2 \kappa a)+i \frac{\left(\kappa^{2}-k^{2}\right)}{2 k \kappa} \sinh (2 \kappa a)\right] .

T^{-1}=\left|\frac{A}{F}\right|^{2}=\cosh ^{2}(2 \kappa a)+\frac{\left(\kappa^{2}-k^{2}\right)^{2}}{(2 \kappa k)^{2}} \sinh ^{2}(2 \kappa a) .

But \cosh ^{2}=1+\sinh ^{2} , so

T^{-1}=1+[\underbrace{1+\frac{\left(\kappa^{2}-k^{2}\right)^{2}}{(2 \kappa k)^{2}}}_{\star}] \sinh ^{2}(2 \kappa a)= 1+\frac{V_{0}^{2}}{4 E\left(V_{0}-E\right)} \sinh ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(V_{0}-E\right)}\right) .

where \star=\frac{4 \kappa^{2} k^{2}+k^{4}+\kappa^{4}-2 \kappa^{2} k^{2}}{(2 \kappa k)^{2}}=\frac{\left(\kappa^{2}+k^{2}\right)^{2}}{(2 \kappa k)^{2}}=\frac{\left(\frac{2 m E}{\hbar^{2}}+\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}\right)^{2}}{4 \frac{2 m E}{\hbar^{2}} \frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}=\frac{V_{0}^{2}}{4 E\left(V_{0}-E\right)} .

(You can also get this from Eq. 2.172 by switching the sign of V_0 and using \sin (i \theta)=i \sinh \theta ).

T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right)         (2.172).

E = V_0 : \psi=\left\{\begin{array}{ll} A e^{i k x}+B e^{-i k x} & (x<-a) \\ C+D x & (-a<x<a) \\ F e^{i k x} & (x>a) \end{array}\right\} .

(In central region -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V_{0} \psi=E \psi \Rightarrow \frac{d^{2} \psi}{d x^{2}}=0, \text { so } \psi=C+D x .)

(1) Continuous ψ at -a : A e^{-i k a}+B e^{i k a}=C-D a .

(2) Continuous ψ at +a : F e^{i k a}=C+D a .

\Rightarrow(2.5) 2 D a=F e^{i k a}-A e^{-i k a}-B e^{i k a} .

(3) Continuous ψ′ at -a : i k\left(A e^{-i k a}-B e^{i k a}\right)=D .

(4) Continuous ψ′ at +a : i k F e^{i k a}=D .

\Rightarrow(4.5) A e^{-2 i k a}-B=F .

Use (4) to eliminate D in (2.5): A e^{-2 i k a}+B=F-2 a i k F=(1-2 i a k) F , and add to (4.5):

2 A e^{-2 i k a}=2 F(1-i k a), \text { so } T^{-1}=\left|\frac{A}{F}\right|^{2}=1+(k a)^{2} = 1+\frac{2 m E}{\hbar^{2}} a^{2} .

(You can also get this from Eq. 2.172 by changing the sign of V_0 and taking the limit E → V_0 using \sin \epsilon \cong \epsilon .

T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right)         (2.172).

E > V_0 : This case is identical to the one in the book, only with V_{0} \rightarrow-V_{0}   . So

T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E-V_{0}\right)} \sin ^{2}\left(\frac{2 a}{\hbar} \sqrt{2 m\left(E-V_{0}\right)}\right) .

Related Answered Questions