Determine the undamped and damped natural frequencies of the system shown in Fig.17.19. k_{1}=2 kN / m , k_{2}=3 kN / m , c_{1}=100 N \cdot s / m , c_{2}=200 N \cdot s / m , \text { and } m=15 kg .
Determine the undamped and damped natural frequencies of the system shown in Fig.17.19. k_{1}=2 kN / m , k_{2}=3 kN / m , c_{1}=100 N \cdot s / m , c_{2}=200 N \cdot s / m , \text { and } m=15 kg .
Equivalent stiffness, k_{e}=\frac{k_{1} k_{2}}{k_{1}+k_{2}} . for springs in series.
=\frac{2 \times 3}{2+3}=1.2 kN / m .
Equivalent damping coefficient, c_{e}=\frac{c_{1} c_{2}}{c_{1}+c_{2}} . for dampers in series.
=\frac{100 \times 200}{100+200}=\frac{200}{3} N \cdot s / m .
Undamped natural frequency,
\omega_{n}=\sqrt{\frac{k_{e}}{m}} .
=\sqrt{\frac{1.2 \times 10^{3}}{15}}=8.94 rad / s .
Critical damping coefficient, c_{c}=2 m \omega_{n}=2 \times 15 \times 8.94=268.328 N \cdot s / m .
Damping ratio, \zeta=\frac{c_{e}}{c_{c}}=\frac{200}{3 \times 268.328}=0.24845 .
Damped natural frequency, \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} .
=8.94 \sqrt{1-(0.24845)^{2}} .
=8.66 rad / s .