Question 17.7: Determine the undamped and damped natural frequencies of the...

Determine the undamped and damped natural frequencies of the system shown in Fig.17.19. k_{1}=2 kN / m , k_{2}=3 kN / m , c_{1}=100 N \cdot s / m , c_{2}=200 N \cdot s / m , \text { and } m=15 kg .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equivalent stiffness,        k_{e}=\frac{k_{1} k_{2}}{k_{1}+k_{2}} .            for springs in series.

=\frac{2 \times 3}{2+3}=1.2 kN / m .

Equivalent damping coefficient,        c_{e}=\frac{c_{1} c_{2}}{c_{1}+c_{2}} .          for dampers in series.

=\frac{100 \times 200}{100+200}=\frac{200}{3} N \cdot s / m .

Undamped natural frequency,

\omega_{n}=\sqrt{\frac{k_{e}}{m}} .

=\sqrt{\frac{1.2 \times 10^{3}}{15}}=8.94 rad / s .

Critical damping coefficient,    c_{c}=2 m \omega_{n}=2 \times 15 \times 8.94=268.328 N \cdot s / m .

Damping ratio,        \zeta=\frac{c_{e}}{c_{c}}=\frac{200}{3 \times 268.328}=0.24845 .

Damped natural frequency,        \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} .

=8.94 \sqrt{1-(0.24845)^{2}} .

=8.66 rad / s .

Related Answered Questions