Determine the vertical displacement of end B of the cantilevered 6061-T6 aluminum alloy rectangular beam. Consider both shearing and bending strain energy
Determine the vertical displacement of end B of the cantilevered 6061-T6 aluminum alloy rectangular beam. Consider both shearing and bending strain energy
Internal Loadings. Referring to the FBD of beam’s right cut segment, Fig. a,
+\uparrow \Sigma F_{y}=0 ; \quad V-150\left(10^{3}\right)=0 \quad V=150\left(10^{3}\right) N \\\curvearrowleft +\Sigma M_{0}=0 ; \quad -M-150\left(10^{3}\right) x=0 \quad M=-150\left(10^{3}\right) xShearing Strain Energy. For the rectangular beam, the form factor is f_{s}=\frac{6}{5}.
\left(U_{i}\right)_{v}=\int_{0}^{L} \frac{f_{s} V^{2} d x}{2 G A}=\int_{0}^{1 m } \frac{\frac{6}{5}\left[150\left(10^{3}\right)\right]^{2} d x}{2\left[26\left(10^{9}\right)\right][0.1(0.3)]}=17.31 JBending Strain Energy. I=\frac{1}{12}(0.1)\left(0.3^{3}\right)=0.225\left(10^{-3}\right) m ^{4}. We obtain
\left(U_{i}\right)_{b}=\int_{0}^{L} \frac{M^{2} d x}{2 E I}=\int_{0}^{1 m } \frac{\left[-150\left(10^{3}\right) x\right]^{2} d x}{2\left[68.9\left(10^{9}\right)\right]\left[0.225\left(10^{-3}\right)\right]} \\=725.689 \int_{0}^{1 m } x^{2} d x \\=\left.725.689\left(\frac{x^{3}}{3}\right)\right|_{0} ^{1 m } \\=241.90 JThus, the strain energy stored in the beam is
U_{i} =\left(U_{i}\right)_{v}+\left(U_{i}\right)_{b} \\=17.31+241.90 \\=259.20 JExternal Work. The work done by the external force P=150 kN is
U_{e}=\frac{1}{2} P \Delta=\frac{1}{2}\left[150\left(10^{3}\right)\right] \Delta_{B}=75\left(10^{3}\right) \Delta_{B}Conservation of Energy.
U_{e} =U_{i} \\75\left(10^{3}\right) \Delta_{B} =259.20 \\\Delta_{B} =3.456\left(10^{-3}\right) m =3.46 mm