Determine the vertical displacement of joint A.The truss is made from A992 steel rods having a diameter of 30 mm.
Determine the vertical displacement of joint A.The truss is made from A992 steel rods having a diameter of 30 mm.
Members Real Force N. As indicated in Fig. a .
Members Virtual Force n. As indicated in Fig. b.
Virtual Work Equation. Since \sigma_{\max }=\frac{F_{B D}}{A}=\frac{50\left(10^{3}\right)}{\frac{\pi}{4}\left(0.03^{2}\right)}=70.74 MPa <\sigma_{Y}=345 MPa,
member | n(N) | N(N) | L(m) | nNL(N^{2}.m) | |
AB | -0.75 | -15(1^{3}) | 3 | 33.75(10^{3}) | |
AD | 1.25 | 25(10^{3}) | 2.5 | 78.125(10^{3}) | |
BC | 1 | 40(10^{3}) | 2 | 80(10^{3}) | |
BD | -1.25 | -50(10^{3}) | 2.5 | 156.25(10^{3}) | |
CD | 1.5 | 45(10^{3}) | 1.5 | 101.25(10^{3}) | |
\sum 449.375(10^{3}) |
Then
1 \cdot \Delta=\Sigma \frac{n N L}{A E} \\1 N \cdot\left(\Delta_{A}\right)_{v}=\frac{449.375\left(10^{3}\right)}{\frac{\pi}{4}\left(0.03^{2}\right)\left[200\left(10^{9}\right)\right]} \\\left(\Delta_{A}\right)_{v}=3.179\left(10^{-3}\right) m =3.18 mm \downarrow