Question 14.28: Determine the vertical displacement of joint C.The members o...

Determine the vertical displacement of joint C.The members of the truss are 2014-T6 aluminum, 40 mm diameter rods.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Normal Forces. The normal forces developed in each member of the truss can be determined using method of joints.
Joint A (Fig. a )

\stackrel{+}{\rightarrow} \Sigma F_{x}=0 ; \quad F_{A C}\left(\frac{3}{5}\right)-15=0 \quad F_{A C}=25 kip ( C ) \\+\uparrow \Sigma F_{y}=0 ; \quad 25\left(\frac{4}{5}\right)-F_{A B}=0 \quad F_{A B}=20 kip ( T )

Joint B (Fig. b )

\stackrel{+}{\rightarrow} \Sigma F_{x}=0 ; \quad F_{B C}=0 \\+\uparrow \Sigma F_{y}=0 ; \quad 20-F_{B D}=0 \quad \quad F_{B D}=20 kip ( T )

Joint C (Fig. c )

+\nearrow \Sigma F_{x^{\prime}}=0 ; \quad F_{C D}=0 \\+\nwarrow \Sigma F_{y^{\prime}}=0 ; \quad F_{C E}-25=0 \quad F_{C E}=25 \operatorname{kip}( C )

Axial Strain Energy. A=\frac{\pi}{4}\left(2^{2}\right)=\pi in ^{2} and L_{A C}=L_{C E}=L_{C D}=\sqrt{3^{2}+4^{2}}=5 ft.

\left(U_{i}\right)_{a} =\Sigma \frac{N^{2} L}{2 A E}=\frac{1}{2(\pi)\left[29\left(10^{3}\right)\right]}\left[20^{2}(4)(12)+25^{2}(5)(12)+20^{2}(4)(12)+25^{2}(5)(12)\right] \\=0.6224 in \cdot kip

External Work. The external work done by the 15 kip force is

U_{e}=\frac{1}{2} P \Delta=\frac{1}{2}(15)\left(\Delta_{h}\right)_{A}=7.5\left(\Delta_{h}\right)_{A}

Conservation of Energy.

U_{e}=\left(U_{i}\right)_{a} \\7.5\left(\Delta_{h}\right)_{A}=0.6224 \\\left(\Delta_{h}\right)_{A}=0.08298 in =0.0830 in
2
3

Related Answered Questions