Determine the voltage drop across each resistor in Figure 7-24.
Determine the voltage drop across each resistor in Figure 7-24.
Because the total voltage is given in the figure, you can solve this problem using the voltage-divider formula. First, you need to reduce each parallel combination to an equivalent resistance. Since R_{1}and R_{2} are in parallel between A and B. combine their values.
R_{AB}= \frac{R_{1}R_{2}}{R_{1}+ R_{2}} = \frac{(3.3 \ k\Omega )(6.2 \ k\Omega )}{9.5 \ k\Omega} = 2.15 \ k\OmegaSince R_{4} is in parallel with the R_{5} and R_{6}, series combination (R_{5+6}) between C and D,combine these values.
R_{CD}= \frac{R_{4}R_{5+6}}{R_{4}+ R_{5+6}} = \frac{(1.0 \ k\Omega )(1.07 \ k\Omega )}{2.07 \ k\Omega} = 517 \ k\OmegaThe equivalent circuit is drawn in Figure 7-25. The total circuit resistance is
R_{T} = R_{AB} + R_{3} + R_{CD} = 2.15 kΩ + 1.0 kΩ + 517 Ω = 3.67 kΩ
Next, use the voltage-divider formula to determine the voltages in the equivalent circuit.
V_{AB}= \left(\frac{R_{AB}}{R_{T}} \right) V_{S} = \left(\frac{2.15 \ k\Omega}{3.67 \ k\Omega} \right) 8 \ V = 4.69 \ VV_{CD}= \left(\frac{R_{CD}}{R_{T}} \right) V_{S} = \left(\frac{517 \ \Omega}{3.67 \ k\Omega} \right) 8 \ V = 1.13 \ V
V_{3}= \left(\frac{R_{3}}{R_{T}} \right) V_{S} = \left(\frac{1.0 \ k\Omega}{3.67 \ k\Omega} \right) 8 \ V = 2.18 \ V
Refer to Figure 7-24. V_{AB} equals the voltage across both R_{1}, and R_{2}. so
V_{1} = V_{2} = V_{AB} = 4.69 V
V_{CD} is the voltage across R_{4} and across the series combination of R_{5} and R_{6} Therefore,
V_{4} = V_{CD} = 1.13 V
Now apply the voltage-divider formula to the series combination of R_{5} and R_{6} to get V_{5} and V_{6}
V_{5}= \left(\frac{R_{5}}{R_{5}+ R_{6}} \right)V_{CD}= \left(\frac{680 \ \Omega }{1070 \ \Omega } \right) 1.13 \ V= 718 \ mVV_{6}= \left(\frac{R_{6}}{R_{5}+ R_{6}} \right)V_{CD}= \left(\frac{390 \ \Omega }{1070 \ \Omega } \right) 1.13 \ V= 412 \ mV